Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 1-9    DOI: 10.11902/1005.4537.2019.228
  研究报告 本期目录 | 过刊浏览 |
载流法制备硫酸露点腐蚀模拟气体的试验研究
刘志峰,朱志平(),石纯,黄赵鑫
长沙理工大学化学与生物工程学院 电力与交通材料保护湖南省重点试验室 长沙 410114
Preparation of Sulfuric Acid Vapor for Simulation of Sulfuric Acid Dew Point Corrosion by Inert Gas Carrying Method
Zhifeng LIU,Zhiping ZHU(),Chun SHI,Zhaoxin HUANG
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
全文: PDF(2816 KB)   HTML
摘要: 

硫酸露点腐蚀是火电厂普遍存在而又棘手的问题,研究其机理、影响因素与防护方法意义重大。目前其研究上面临的主要障碍是如何获得可靠的硫酸露点腐蚀模拟气体,通过分析国内外硫酸露点腐蚀模拟气体产生方法的缺陷,提出了载流法产生模拟气体的方法,即对高浓度硫酸进行加热通N2,把硫酸蒸汽带入露点腐蚀模拟装置中。以电导率、SO42-为监测指标,讨论了硫酸体积、硫酸浓度、加热温度、N2流速对硫酸蒸汽产生效率的影响,结果表明:这是一种获取硫酸露点腐蚀的新方法。同时,以实际燃机电站余热锅炉排气成分为例,验证了该方法的可行性。

关键词 露点腐蚀模拟气体硫酸蒸汽电导率载流法    
Abstract

Sulfuric acid dew point corrosion is a common and troublesome issue for thermal power plants. Therefore, it is of great significance to clearly understand the relevant mechanism, influencing factors and protection methods. The main obstacle currently encountered for the matter is how to reliably obtain the sulfuric acid gas to simulate the real sulfuric acid dew point corrosion environment. By analyzing the insufficiency of the existed methods for preparation of such gas at home and abroad, a method of introducing the simulated gas into the reaction chamber by inert gas carrier is proposed, namely, with help of a nitrogen steam, the sulfuric acid vapor is brought into the dew point corrosion simulation device. Based on the monitored index of conductivity and SO42-, the effect of sulfuric acid volume, sulfuric acid concentration, heating temperature and N2 flow rate on the production efficiency of sulfuric acid vapor were discussed. The results show that the new method can rightly provide for dew point corrosion of sulfuric acid vapor. At the same time, the feasibility of the method is verified by taking the exhaust gas of the waste heat boiler of the actual gas turbine power station.

Key wordsdew point corrosion    simulated gas    sulfuric acid vapor    conductivity    current carrying method
收稿日期: 2019-04-23     
ZTFLH:  TG172  
基金资助:湖南省科技计划重点项目(2013GK2016);湖南省研究生创新项目(CX20190700)
通讯作者: 朱志平     E-mail: zzp8389@163.com
Corresponding author: Zhiping ZHU     E-mail: zzp8389@163.com
作者简介: 刘志峰,男,1995年生,硕士生

引用本文:

刘志峰,朱志平,石纯,黄赵鑫. 载流法制备硫酸露点腐蚀模拟气体的试验研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
Zhifeng LIU, Zhiping ZHU, Chun SHI, Zhaoxin HUANG. Preparation of Sulfuric Acid Vapor for Simulation of Sulfuric Acid Dew Point Corrosion by Inert Gas Carrying Method. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 1-9.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.228      或      https://www.jcscp.org/CN/Y2020/V40/I1/1

Liquid phase composition / %H2SO4Boiling temperature / ℃Steam phase composition
0100.0H2O
5101.0H2O
10102.0H2O
15103.1H2O
20104.3H2O
25105.8H2O
30107.7H2O
35110.0H2O
40113.2H2O
45117.2H2O
50122.7H2O
52125.1H2O
55129.6H2O
58134.5H2O
60138.3H2O
62142.4H2O
65149.3H2O
68156.8H2O
70162.8H2O
72169.1H2O
75179.3H2O
78190.4H2O
80199.2H2O
82208.4H2O
85223.10.001%H2SO4
88241.70.063%H2SO4
90260.60.47%H2SO4
92282.23.65%H2SO4
94308.117.9%H2SO4
95321.334.6%H2SO4
96331.159.4%H2SO4
97336.883.15%H2SO4
98.33338.898.33%H2SO4
99322.460.5%H2SO4
100279.626.9%H2SO4
表1  硫酸的沸腾温度-蒸汽相成分
Liquid phase composition / %H2SO4Temperature / ℃
20406080100120140160180200
8500000.0010.0010.0010.0010.0010.001
900.080.090.110.130.170.190.220.250.300.34
949.199.269.339.8111.311.412.213.113.414.0
9657.658.258.558.858.458.658.458.558.558.6
98.398.398.398.398.398.398.398.2598.2598.398.3
10067.460.955.150.045.942.740.337.735.333.4
表2  硫酸溶液蒸汽中的H2SO4含量 (mass fraction / %)
图1  SO3转变为H2SO4蒸汽的转化率与温度的关系
图2  模拟气体产生装置示意图
图3  高纯水和蒸发实验后吸收液的离子色谱图

Sulfuric acid concentration

mol·L-1

First time

μS·cm-1

Second time

μS·cm-1

Third time

μS·cm-1

Average value

μS·cm-1

1×10-24480441044904460
8×10-33510353035503530
6×10-32640266026502650
4×10-31820183018201820
2×10-3981983984982
1×10-3501507503504
8×10-4414417416416
6×10-4321316324320
4×10-4215216208213
2×10-4114114113114
1×10-449.651.850.850.7
8×10-542.743.141.242.3
6×10-531.733.630.732.0
4×10-520.120.120.020.1
2×10-510.710.110.210.3
1×10-57.176.526.236.64
1×10-61.131.211.091.14
表3  不同浓度硫酸溶液对应的电导率数据
图4  不同体积硫酸溶液,吸收液的电导率数据
图5  不同浓度硫酸溶液下吸收液的电导率数据
图6  不同流速时吸收液的电导率数据
图7  不同温度下吸收液的电导率数据
No.CO2SO2H2OO2SO3N2
112.60.0739.2560.00145672.375
23.36460.00027.635913.6328---74.4932
Average7.98230.03668.442959.81640.00145673.4341
表4  燃机电站排气成分表 (volume fraction / %)
图8  ND和20G钢的腐蚀速率
图9  试片表面的XRD谱
[1] Hu C S, Yang J W, Liang H J, et al. Corrosion cause analysis of coal economize tube in a regenerative boiler [J]. Corros. Sci. Prot. Technol., 2005, 17: 366
[1] (胡传顺, 杨锦伟, 梁会军等. 余热锅炉省煤器管腐蚀原因分析 [J]. 腐蚀科学与防护技术, 2005, 17: 366)
[2] Masamichi K, Translated by Yuan B L. Corrosion Damage and Corrosion Prevention Technology of Metals [M]. Beijing: Chemical Industry Press, 1988
[2] (小若正伦著, 袁宝林译. 金属的腐蚀破坏与防蚀技术 [M]. 北京: 化学工业出版社, 1988)
[3] Cen K F, Fan J R, Chi Z H, et al. Principles and Calculations for Prevention of Ash, Slagging, Wear and Corrosion in Boilers and Heat Exchangers [M]. Beijing: Science Press, 1994
[3] (岑可法, 樊建人, 池作和等. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算 [M]. 北京: 科学出版社, 1994)
[4] Rong L E, Yuan Z F, Liu Z M, et al. Principle of Power Plant Boiler [M]. Beijing: China Electric Power Press, 1997
[4] (容銮恩, 袁镇福, 刘志敏等. 电站锅炉原理 [M]. 北京: 中国电力出版社, 1997)
[5] Yang Y G, Zhang T, Shao Y W, et al. In situ study of dew point corrosion by electrochemical measurement [J]. Corros. Sci., 2013, 71: 62
[6] Zhang S J, Wang Z Y, Ma Z L, et al. Discussion on the conformable super- low exhaust gas temperature and the low temperature corrosion problem of the phase change vacuum boiler [J]. Ind. Boil, 2005, (6): 12
[6] (张少军, 王治远, 马振林等. 真空相变锅炉低排烟温度设计与低温腐蚀 [J]. 工业锅炉, 2005, (6): 12)
[7] Zhu Z H. Influencing factors and preventive measures of dew point corrosion on heat pipe air preheater [J]. Green Pet. Petrochem., 2017, 2(3): 44
[7] (朱子和. 影响热管空预器露点腐蚀因素与预防措施 [J]. 石油石化绿色低碳, 2017, 2(3): 44)
[8] Ye X X, Zhou C, Zhang C. Corrosion performance of a new low alloy steel Cu-Sb-Mo for resisting dew-point corrosion induced by sulfuric acid and hydrochloric acid [J]. Corros. Sci. Prot. Technol., 2015, 27: 135
[8] (叶先祥, 周成, 张聪. 新型耐硫酸盐酸露点腐蚀钢的性能研究 [J]. 腐蚀科学与防护技术, 2015, 27: 135)
[9] Du Y Q, Yang Y G, Yuan D Q, et al. Dew point corrosion behavior of rolling Q235 steel using in situ electrochemical measurement [J]. Corros. Sci. Prot. Technol., 2015, 27: 565
[9] (杜彦强, 杨延格, 袁德全等. 利用原位电化学测量研究Q235轧制钢板的露点腐蚀行为 [J]. 腐蚀科学与防护技术, 2015, 27: 565)
[10] She F, Zhang Y K. Material selection of sulfuric acid dew point corrosion in economizer [J]. Petro-Chem. Eq. Technol., 2018, 39 (1): 59
[10] (佘锋, 张迎恺. 省煤器硫酸露点腐蚀的选材 [J]. 石油化工设备技术, 2018, 39(1): 59)
[11] Zhang Z X, Zhang Z C, Ye Q J, et al. Study of dewpoint corrosion of coal-fired boiler [J]. J. Mater. Eng., 2012, (8): 19
[11] (张知翔, 张智超, 曳前进等. 燃煤锅炉露点腐蚀实验研究 [J]. 材料工程, 2012, (8): 19)
[12] Li Y, Wu B, Xu X C. Effects of SO2, SO3 and H2O on dew point of flue gas [J]. Acta Sci. Circum., 1997, 17(1): 126
[12] (李彦, 武彬, 徐旭常. SO2、SO3和H2O对烟气露点温度影响的研究 [J]. 环境科学学报, 1997, 17(1): 126)
[13] Chang J, Chen J, Huang A, et al. Research on the dew point corrosion performance of 2205 duplex stainless steel in sulfuric acid [J]. J. Beijing Inst. Petro-Chem. Technol., 2015, 23(4): 10
[13] (常季, 陈吉, 黄澳等. 2205双相不锈钢硫酸露点腐蚀性能的研究 [J]. 北京石油化工学院学报, 2015, 23(4): 10)
[14] Park S A, Lee S H, Kim J G. Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid [J]. Met. Mater. Int., 2012, 18: 975
[15] Kowaka M. Recent progress on the prevention of dew point corrosion [J]. Jpn. Soc. Corros. Eng., 1981, 30: 650
[16] Lin P, Yu Q, Yue B, et al. Failure analysis of a tube sheet of condenser [J]. Corros. Sci. Prot. Technol., 2001, 13: 247
[16] (林萍, 俞强, 岳斌等. 冷凝器管板失效分析 [J]. 腐蚀科学与防护技术, 2001, 13: 247)
[17] Kluczynski T H. Physical chemistry study of H2O-SO3 system—1. Equilibrium of vapor phase and liquid phase of H2O-SO3 system [J]. Sulphur. Acid Ind., 1963, (1): 24
[17] (卢钦斯基Г П. H2O-SO3系统的物理化学研究—1. H2O-SO3系统之蒸汽相与液相的平衡 [J]. 硫酸工业, 1963, (1): 24)
[18] Song J. Research on numerical simulation of heat transfer and low temperature economizer of low temperature corrosion of Utillity Boile [D]. Beijing: North China Electric Power University, 2016
[18] (宋杰. 电站锅炉低温省煤器换热特性数值模拟及低温腐蚀研究 [D]. 北京: 华北电力大学 (北京), 2016)
[19] Li J, Yan W P, Gao B T, et al. The calculation of the gas acid dew-point in utility boiler [J]. Boil Technol., 2009, 40(5): 14
[19] (李钧, 阎维平, 高宝桐等. 电站锅炉烟气酸露点温度的计算 [J]. 锅炉技术, 2009, 40(5): 14)
[20] Zhong C L, Yuan G H. Establishment of low temperature corrosion test platform for waste heat boiler [J]. China Plant Eng., 2015, (11): 60
[20] (钟春雷, 袁桂华. 余热锅炉低温腐蚀试验平台的建立 [J]. 中国设备工程, 2015, (11): 60)
[21] Chang L S, Liu Z, Hu M Y, et al. Factors affecting flue gas dew point in electrostatic precipitators [J]. Environ. Eng., 1998, 16(2): 72
[21] (常连生, 刘忠, 胡满银等. 电除尘器中影响烟气露点的因素 [J]. 环境工程, 1998, 16(2): 72)
[22] Liu Z N, Liu Y, Tan H Z, et al. Study on corrosion mechanism of economizer of waste heat boilers [J]. Chin. J. Power Eng., 2010, 30: 508
[22] (刘正宁, 刘洋, 谭厚章等. 余热锅炉省煤器腐蚀机理的研究 [J]. 动力工程学报, 2010, 30: 508)
[23] Song J. The design and research of exhaust gas comprehensive treatment device for gas fired boiler [D]. Chongqing: Chongqing University, 2016
[23] (宋杰. 燃气锅炉尾气综合处理装置的设计研发 [D]. 重庆: 重庆大学, 2016)
[24] Li C S, Nie X. Engineering design Ideas for preventing low temperature corrosion of boiler low temperature economizer [J]. Power Syst. Eng., 2016, 5: 37
[24] (李传胜, 聂鑫. 防止锅炉低温省煤器发生低温腐蚀的工程设计思路 [J]. 电站系统工程, 2016, 5: 37)
[25] Li X G, Cheng X Q, Xiao K, et al. An experimental device and test method for simulating sulfuric acid dew point corrosion [P]. Chin Pat, 101876622B, 2011
[25] (李晓刚, 程学群, 肖葵等. 一种模拟硫酸露点腐蚀的实验装置及测试方法 [P]. 中国专利, 101876622B, 2011)
[26] Zhong B, Chen Y Q, Xu X L, et al. A test device for testing materials resistant to sulfuric acid dew point corrosion [P]. Chin Pat, 104237112B, 2018
[26] (钟彬, 陈义庆, 徐小连等. 一种测试材料耐硫酸露点腐蚀的试验装置 [P]. 中国专利, 104237112B, 2018)
[27] Hou F, Xu H, Zhang L, et al. Testing device and test method for evaluating material anti-dew corrosion [P]. Chin Pat, 101251467A, 2011
[27] (侯峰, 徐宏, 张莉等. 评价材料抗露点腐蚀的测试装置及测试方法 [P]. 中国专利, 101251467A, 2011)
[28] Chen H, Li M, Li X G, et al. Failure analysis of corrosion cracking and simulating test for FCCU [J]. J. Mech. Strength, 2004, 26: 691
[28] (陈华, 李明, 李晓刚等. 催化裂化装置腐蚀失效分析与实验室模拟实验研究 [J]. 机械强度, 2004, 26: 691)
[29] Thibault J D, Steward F R, Ruthven D M. The kinetics of absorption of SO3 in calcium and magnesium oxides [J]. Can. J. Chem. Eng., 1982, 60: 796
[30] Zhao H C, Yao M Y, Li J, et al. Deposition behavior of sulfuric acid vapor on heat exchanger surfaces [J]. Therm. Power Gener., 2016, 45(9): 86
[30] (赵瀚辰, 姚明宇, 李季等. 换热器内硫酸蒸气沉积特性研究 [J]. 热力发电, 2016, 45(9): 86)
[31] Zhao Q X, Zhang Z X, Du W Z, et al. Experimental study on sulfuric acid dewpoint corrosion in simulated atmospheric conditions [J]. J. Chin. Soc. Power Eng., 2012, 32: 420
[31] (赵钦新, 张知翔, 杜文智等. 模拟气氛下硫酸露点的腐蚀试验研究 [J]. 动力工程学报, 2012, 32: 420)
[32] Yan J. Experimental study on removal of acid mist from flue gas using wesp [D]. Ji'nan: Shandong University, 2010
[32] (闫君. 湿式静电除雾器脱除烟气中酸雾的试验研究 [D]. 济南: 山东大学, 2010)
[33] Tianhua Institute of Chemical Machinery & Automation Co.. Corrosion and Protection Manual (Volume 2)-Corrosion Resistant Metal Materials and Corrosion Protection Technology [M]. 2nd Ed. Beijing: Chemical Industry Press, 2008
[33] (天华化工机械及自动化研究设计院. 腐蚀与防护手册 (第2卷)-耐蚀金属材料及防蚀技术 [M]. 第2版. 北京: 化学工业出版社, 2008)
[34] Xiang B X, Xing W C, Li J F, et al. The measurement and correction of correlation formulas of flue gas acid dew point [J]. Boiler Technol., 2014, 45(1): 1
[34] (向柏祥, 邢文崇, 李健峰等. 烟气酸露点的测量与计算关联式的修正 [J]. 锅炉技术, 2014, 45(1): 1)
[35] Wang Y C, Tang G H. Prediction of sulfuric acid dew point temperature on heat transfer fin surface [J]. Appl. Therm. Eng., 2016, 98: 492
[36] Huang R H, Ma X G, Zhang Q G, et al. Comparison and analysis on the calculation methods of boiler flue gas acid dew point [J]. Shanghai Energy Conserv., 2011, (11): 29
[36] (黄荣华, 马宪国, 张泉根等. 锅炉烟气露点温度计算方法比较分析 [J]. 上海节能, 2011, (11): 29)
[1] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[2] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[3] 吴士军. NaOH对铝合金微弧氧化膜特性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 520-524.
[4] 郜华萍,吴飞,龙晋明,介星迪,张冬平. 黄磷尾气燃气锅炉的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31(1): 51-55.