Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 439-444    DOI: 10.11902/1005.4537.2014.003
  本期目录 | 过刊浏览 |
Cr13不锈钢在盐酸溶液喷射冲刷作用下的表面腐蚀形貌表征
程从前1, 曹铁山1, 王冬颖2, 姚景文2, 王健1, 关锰2, 赵杰1()
1. 大连理工大学材料科学与工程学院 大连 116085
2. 沈阳鼓风机集团有限公司核电事业部 沈阳 110001
Erosion-corrosion Morphology of Cr13 Stainless Steel Induced by Jet Flow of Hydrochloric Acid Solution
CHENG Congqian1, CAO Tieshan1, WANG Dongying2, YAO Jingwen2, WANG Jian1, GUAN Meng2, ZHAO Jie1()
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
2. Nuclear Division, Shenyang Blower Works Group Co. Ltd, Shenyang 110001, China
全文: PDF(4937 KB)   HTML
摘要: 

研究了Cr13马氏体不锈钢在盐酸喷射条件下腐蚀形貌的局部差异。结果表明,射流与样品表面接触中心区域产生圆状点蚀坑、中心区的四周形成放射性分布的彗星状腐蚀沟槽;随腐蚀时间延长,蚀坑和沟槽密度增加;彗星状腐蚀沟槽由点蚀坑和尾部的沟槽组成;点蚀坑起源于MnS夹杂处,彗星尾部沟槽主要发生在马氏体区,而δ 铁素体区没有明显腐蚀。

关键词 不锈钢冲刷腐蚀形貌点蚀夹杂物    
Abstract

Erosion-corrosion morphology of Cr13 stainless steel induced by jet flow of hydrochloric acid solution was characterized by means of SEM. Round-shaped pits was observed on the surface site corresponding to the center of impingement area of the jet flow. Around the center area, there exist radial patterns of comet-like grooves. The density of pits and grooves increases with increasing corrosion time. SEM micrographs reveal that the comet-like grooves composed of a pit as its head and a swallow-like groove as its tail, of which the head is initiated on the inclusion MnS particles; however, the tail is mainly laid on site of the martensite, while no obvious corrosion occurs on the δ-Ferrite zone of the steel.

Key wordsstainless steel    impingement    corrosion morphology    pit    inclusion
    
ZTFLH:  TG172  
基金资助:国家自然科学基金项目 (51101024和51101037) 资助
作者简介: null

程从前,男,1982年生,博士,讲师,研究方向为不锈钢装备制造相关的腐蚀

引用本文:

程从前, 曹铁山, 王冬颖, 姚景文, 王健, 关锰, 赵杰. Cr13不锈钢在盐酸溶液喷射冲刷作用下的表面腐蚀形貌表征[J]. 中国腐蚀与防护学报, 2014, 34(5): 439-444.
Congqian CHENG, Tieshan CAO, Dongying WANG, Jingwen YAO, Jian WANG, Meng GUAN, Jie ZHAO. Erosion-corrosion Morphology of Cr13 Stainless Steel Induced by Jet Flow of Hydrochloric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 439-444.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.003      或      https://www.jcscp.org/CN/Y2014/V34/I5/439

图1  冲刷腐蚀实验回路示意图
Phase area 1 2 3 4 5 Average
δ ferrite 243 210 222 220 233 226±13
Martensite 310 256 264 292 291 283±22
表1  Cr13不锈钢不同组织的显微硬度
图2  Cr13不锈钢金相组织及显微压痕图
图3  冲刷腐蚀60 min后Cr13不锈钢表面形貌
图4  黑色彗星状条纹的典型形貌
图5  Cr13不锈钢腐蚀不同时间后不同区域黑色点状和彗星状条纹的密度
图6  图3a中B区域彗星状条纹的SEM像
图7  Cr13不锈钢冲刷腐蚀15 min后蚀坑的EDS面扫描结果
图8  Cr13不锈钢冲刷腐蚀180 min后彗星状条纹头部附近的EDS面扫描结果
[1] Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion[J]. Corros. Sci. Prot. Technol., 2000, 12(1): 36-40
[1] (郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制[J]. 腐蚀科学与防护技术, 2000, 12(1): 36-40)
[2] Cai F, Liu W, Fan X H, et al. Research progress on erosion corrosion of metallic materials under fluid jet impingement[J]. Tribology, 2011, 31(5): 521-527
[2] (蔡峰, 柳伟, 樊学华等. 流体喷射条件下金属材料冲刷腐蚀的研究进展[J]. 摩擦学学报, 2011, 31(5): 521-527)
[3] Jin W X, Luo Y N, Song S Z. Marine erosion-corrosion detections of metal materials[J]. J. Chin. Soc. Corros. Prot., 2008, 28(6): 377-344
[3] (金威贤, 雒娅楠, 宋诗哲. 金属材料实海冲刷腐蚀检测[J]. 中国腐蚀与防护学报, 2008, 28(6): 337-344)
[4] Hu X, Neville A. The electrochemical response of stainlesssteels in liquid-solid impingement[J]. Wear, 2005, 258(1-4): 641-648
[5] Stack M M, Purandare Y, Hovsepian P. Impact angle effects ontheerosion-corrosion of superlattice CrN/NbN PVD coatings[J]. Surf. Coat. Technol., 2004, 188/189: 556-565
[6] Schmitt G, Bakalli M. A critical review of measuring techniquesfor corrosion rates under flow conditions[A]. CORROSION2006 NACE International [C]. San Diego, Texas, 2006, 06593
[7] Xi Y T, Liu D X, Han D, et al. Improvement of erosion and erosion-corrosion resistance of 2Cr13 stainless steel by low temperature plasma nitriding[J]. Mater. Eng., 2007, 11: 76-82
[7] (奚运涛, 刘道新, 韩栋等. 低温离子渗氮提高2Cr13不锈钢的冲蚀磨损与冲刷腐蚀抗力[J]. 材料工程, 2007, 11: 76-82)
[8] Qiao Y X, Liu F H, Ren A, et al. Erosion-corrosion behavior of high nitrogen stainless steel and commercial 321 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 141-145
[8] (乔岩欣, 刘飞华, 任爱等. 高氮奥氏体不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145)
[9] Fang X X, Zhen R, Xue Y J, et al. Erosion-corrosion synergism of 65Mn and stainless steel in single liquid phase and liquid/solid two-phase[J]. Chin. J. Mater. Res., 2011, 25(2): 172-178
[9] (方信贤, 甄睿, 薛亚军等. 两种不锈钢在单相流和液/固两相流中冲刷与腐蚀的交互作用[J]. 材料研究学报, 2011, 25(2): 172-178)
[10] Sedrik A J. Corrosion of Stainless Steels (2nd ed.)[M]. NewYork: Wiley, 1996: 82-93
[11] Wharton A J, Wood R J K. Influence of flow conditions on the corrosion of AISI 304L stainless steel[J]. Wear, 2004, 256: 525-536
[12] Sasaki K, Burstein G T. Erosion-corrosion of stainless steel under impingement by a fluid jet[J]. Corros. Sci., 2007, 49: 92-108
[13] Xu L Y, Cheng Y F. Effect of fluid hydrodynamics on flow-assisted corrosion of aluminum alloyin ethylene glycol-water solution studied by a microelectrode technique[J]. Corros. Sci., 2009, 51: 2330-2335
[14] Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water[J]. Corros. Sci., 2010, 52: 2716-2724
[15] Wang S G, Sun M, Long K, et al. The electronic structure characterization of oxide film on bulknanocrystalline 304 stainless teel in hydrochloric acid solution[J]. Electrochim. Acta, 2013, 112: 371-377
[16] Alvarez S M, Bautista A, Velasco F. Influence ofstrain-induced martensite in the anodic dissolution ofaustenitic stainless steels in acid medium[J]. Corros. Sci., 2013, 69: 130-138
[17] Fang X X, Xu Y Y, Zhen R, et al. Erosion corrosion behavior of Ni-Cu-P and 316L in high temperature flow containing hydrochloric acid[J]. Rare Met. Mater. Eng., 2012, 41(S2): 505-509
[17] (方信贤, 徐艳艳, 甄睿等. Ni-Cu-P和316L 在含盐酸高温流体中冲蚀行为[J]. 稀有金属材料工程, 2012, 41(增刊2): 505-509)
[18] Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion[J]. Corros. Sci., 2013, 67: 20-31
[19] Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalyzing pitting corrosion of austenitic stainless steels[J]. Acta Mater., 2010, 58: 5070-5085
[20] Neville A, Wang C. Erosion-corrosion of engineering steels-Can it be managed by use of chemicals?[J]. Wear, 2009, 267(11): 2018-2026
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[9] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[10] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[12] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[13] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[14] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[15] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.