Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 445-450    DOI: 10.11902/1005.4537.2014.009
  本期目录 | 过刊浏览 |
电化学频率调制技术在Q235钢/NaCl腐蚀体系中的应用
周年光, 查方林(), 冯兵, 何铁祥
湖南省电力公司科学研究院 长沙 410007
Application of Electrochemical Frequency Modulation for Study of Q235 Steel Corrosion in NaCl Solution
ZHOU Nianguang, ZHA Fanglin(), FENG Bing, HE Tiexiang
Hunan Electric Power Corporation Research Institute, Changsha 410007, China
全文: PDF(776 KB)   HTML
摘要: 

分析了主要测量参数对电化学频率调制技术 (EFM) 测量结果的影响;探讨了校验因子偏离理论值的原因;通过EIS分析以及与线性极化法和失重法的对比实验,研究了在Q235钢/NaCl体系中EFM测量结果的准确性。结果表明:EFM测量基频越高,测量结果误差越大,在Q235钢/NaCl体系中应选取0.01 Hz的基频;校验因子CF3对测量性的判断不可靠,宜以CF2为校验标准;EFM方法测量的极化阻抗值准确性强于线性极化;与失重法的对比实验表明EFM是一种快速准确的腐蚀速率测量方法。

关键词 电化学频率调制基频校验因子腐蚀速率极化电阻    
Abstract

The influence of main parameters on the measurement results of electrochemical frequency modulation (EFM) and the deviation of causality factors from their theoretical values were analyzed. Then the accuracy of corrosion rate measured by EFM for Q235 steel in NaCl solution was comparatively checked by means of measurements with EIS, linear-potentiodynamic technique and weight-loss method. The results show that great error will be introduced when the base frequency is too high; 0.01 Hz is a proper base frequency for Q235 steel in NaCl solution. Causality factor CF2 is much reliable than CF3 for checking the accuracy of EFM measurement. Rp value measured by EFM is much accurate than that by linear-potentiodynamic technique; in comparison with weight-loss method, EFM is a rapid and accurate method for measuring corrosion rate.

Key wordsEFM    base frequency    causality factor    corrosion rate    polarization resistance
    
ZTFLH:  TQ150.1  
基金资助:国家电网科技项目 (KG12K16004)和湖南省电力公司科技项目(5116AA110005)资助
作者简介: null

周年光,男,1970年生,博士,研究方向为腐蚀与防护技术

引用本文:

周年光, 查方林, 冯兵, 何铁祥. 电化学频率调制技术在Q235钢/NaCl腐蚀体系中的应用[J]. 中国腐蚀与防护学报, 2014, 34(5): 445-450.
Nianguang ZHOU, Fanglin ZHA, Bing FENG, Tiexiang HE. Application of Electrochemical Frequency Modulation for Study of Q235 Steel Corrosion in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 445-450.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.009      或      https://www.jcscp.org/CN/Y2014/V34/I5/445

图1  Q235钢在0.5 mol/L NaCl溶液中0.01和0.1 Hz基频下的EFM扫描结果
图2  Q235钢在0.5 mol/L NaCl溶液中腐蚀不同时间的电化学阻抗结果
图3  Q235钢腐蚀阻抗等效电路图
Time
h
R0
Ωcm2
Rf
Ωcm2
Qdl
Ssncm-2
Rt
Ωcm2
fb
Hz
17 2.11 34 4.28×10-4 1770 0.21
163 2.57 24 5.67×10-4 2342 0.12
353 2.09 72 5.56×10-4 2211 0.13
表1  Q235钢阻抗主要参数拟合结果
图4  Q235钢腐蚀不同周期线性极化曲线
图5  EIS, LPD和EFM方法测量的Rp随时间变化的曲线
图6  Q235钢腐蚀不同周期的EFM频谱图
Time
h
icorr
μAcm-2
ba bc Rp
Ω
CF2 CF3
mVdec-1
17 8.24 31.09 41.61 2160 1.97 1.20
163 8.60 33.49 45.40 2241 2.13 2.18
353 6.24 24.05 31.45 2184 1.99 3.80
表2  Q235钢腐蚀不同周期的EFM测量结果
图7  EFM测量的腐蚀速率线性拟合结果
图8  EIS和LPD测量的腐蚀速率线性拟合结果
图9  EFM, 失重法, EIS和LPD法测量腐蚀速率对比结果
[1] Bosch R W, Bogaerts W F. Instantaneous corrosion rate measurement with small-amplitude potential intermediation techniques[J]. Corrosion, 1996, 52: 204-211
[2] Bosch R W, Hubrecht J, Bogaerts W F, et al. Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoring[J]. Corrosion, 2001, 57: 60-70
[3] Abdel-Rehim S S, Khaled K F, Abd-Elshafi N S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivation[J]. Electrochim. Acta, 2006, 51: 3269-3277
[4] Mansfeld F. The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition-a review[J]. Mater. Corros., 2003, 54: 489-495
[5] Al-Mobarak N A, Khaled K F, Hamed M N H, et al.Employing electrochemical frequency modulation for studying corrosion and corrosion inhibitor of copper in sodium chloride solutions[J]. Arabian J.Chem., 2011, 4: 185-193
[6] Javaherdashti R.Impact of sulphate-reducing bacteria on the performance of engineering materials[J]. Appl. Microbiol. Biotechnol., 2011, 91: 1507-1513
[7] Rauf A, Bogaerts W F. Employing electrochemical frequency modulation for pitting corrosion[J]. Corros. Sci., 2010, 52: 2773-2784
[8] Rauf A, Bogaerts W F, Mahdi E. Implementation of electrochemical frequency modulation to analyze stress corrosion cracking[J]. Corrosion, 2012, 68: 352-363
[9] Khaled K F.Evaluation of electrochemical frequency modulation as a new technique for monitoring corrosion and corrosion inhibitor of carbon steel in perchloric acid using hydrazine carbodithioic acid deriwatives[J]. J. Appl. Electrochem., 2009, 39: 429-438
[10] Kus E, Mansfeld F. An evaluation of the electrochemical frequency modulation (EFM) technique[J]. Corros. Sci., 2006, 48: 965-979
[11] Beese P, Venzlaff H, Srinivasan J, et al. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation[J]. Elctrochim. Acta, 2013, 105: 239-247
[12] Rauf A, Bogaerts W F. Monitoring of crevice corrosion with the electrochemical frequency modulation technique[J]. Electrochim.Acta, 2009, 54: 7357-7363
[13] Zhao X D, Duan J Z, Wu S R, et al. Formation and transformation of surface corrosion products of Q235 steel influenced by sulfate-reducing bacteria in seawater[J]. J. Chin. Soc. Corros. Prot., 2008, 28(5): 299-302
[13] (赵晓栋, 段继周, 武素茹等.海水中硫酸盐还原菌作用下Q235钢表面腐蚀产物的形成和转化[J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302)
[1] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[2] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[3] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[4] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[5] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[8] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[9] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[10] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[11] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[12] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[13] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[14] 张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[15] 刘智勇, 贾静焕, 杜翠薇, 李晓刚, 王丽颖. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.