Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (3): 177-181    DOI:
技术报告 Current Issue | Archive | Adv Search |
EFFECT OF MICROBES ON EARLY CORROSION BEHAVIOR OF Q235 STEEL IN FRESHWATER
JIANG Li1; CAO Gang1; MAO Xuhui1;LIN An1; ZHU Hua1; GAN Fuxing1;2
1. Department of Environmental Engineering; School of Resource and Environmental Science; Wuhan University; Wuhan 430072;
2. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Download:  PDF(1182KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of microbes on the early corrosion behavior of Q235 steel in fresh waters was studied using immersion tests, electrochemical measurements and surface analysis techniques. In the field immersion test at Dan Jiangkou reservoir in China, the corrosion weight loss of Q235 steel increased as the immersion water depth increased. The reason may be that the microbe amount (especially algae amount) decreased with water depth increasing, which resulted in the biofilm formed on the surface of coupons with weak density and reduced coverage area. Therefore, more surface of Q235 steel were exposed to water and the corrosion weight loss increased. This conclusion was also confirmed by the electrochemical measurements and immersion test in natural freshwater. The results of the scanning electron microscopy (SEM) and Fourier transform infra-red (FT-IR) spectra further confirmed that the surface film formed in eutrophic freshwater was thicker and with more complex corrosion products.

Key words:  microbes      Q235 steel      corrosion      freshwater      eutrophication     
ZTFLH: 

TG172

 
Corresponding Authors:  GAN Fuxing     E-mail:  fxgan88@163.com
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

JIANG Li CAO Gang MAO Xuhui1;LIN An ZHU Hua GAN Fuxing. EFFECT OF MICROBES ON EARLY CORROSION BEHAVIOR OF Q235 STEEL IN FRESHWATER. J Chin Soc Corr Pro, 2009, 29(3): 177-181.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I3/177

[1] Croci L, Suffredini E, Ciccaglioni G, et al.Characterization of microalgae and associated bacteria collected from shellfish harvesting areas[J]. Harmful Algae, 2006, 5: 266-274
[2] Sommariva C, Comite A, Capannelli G. Relationship between biofouling and recovery ratio: the theoretical approach and one experimental case[J]. Desalination, 2007, 204: 175-180
[3] Jeffrey R, Melchers R E. Bacteriological influence in the development of iron sulphide species in marine immersion environments[J]. Corros. Sci.,2003, 45: 693-714
[4] Mei Q, Wu Y H, Xiao B D, et al. Growth characteristics of photoautotrophic biofilm in Donghu Lake in Wuhan[J]. J. Ecol. Rural Environ., 2007, 23(2): 61-65
    (梅琼, 吴永红, 肖邦定等. 武汉东湖秋季水体中光合自氧生物膜的生长特性[J]. 生态与农村环境学报, 2007, 23(2): 61-65)
[5] Sanitary Regulation of Life Drinking Water[M].Beijing:Ministry of Health of the People’s Republic of China, 2001
    (生活饮用水卫生规范[M]. 北京:卫生部, 2001)
[6] Jin X C, Tu Q Y.Specifications of Eutrophic Lake Survey (2nd Edition)[M]. Beijing:China Environmental Science, 1990: 192-180
    (金相灿, 屠清瑛. 湖泊富营养化调查规范(第二版)[M]. 北京: 中国环境科学出版社, 1990: 192-180)
[7] Song S Z. The Research Technique of CorrosionElectrochemistry[M]. Beijing: Chemical Industry Press, 1988: 101-117
    (宋诗哲. 腐蚀电化学研究方法[M]. 北京: 化学工业出版社, 1988: 101-117)
[8] Yang D T, Chen W M, Zhang Y L, et al. Effect of underwater light spectrum on primary production of the Taihu Lake [J]. Rural Eco-Environ. 2003, 2: 24-28
    (杨顶田,  陈伟民, 张运林等. 太湖水体光学特征及其对水中初级生产力的影响[J]. 农村生态环境, 2003, 2: 24-28)
[9] Yang D T, Chen W M, Chen Y W, et al. Optical measurements of primary production in Meiliang Bay, Taihu Lake[J].J. Lake Sci., 2002, 14(4): 363-368
    (杨顶田, 陈伟民, 陈宇炜等. 太湖梅梁湾水体中初级生产力的光学检测[J]. 湖泊科学, 2002, 14(4): 363-368)
[10] Wang Q F, Song S Z. Progress in marine biologically influenced corrosion study[J]. J. Chin. Soc. Corros.Prot., 2002, 22(3): 184-188
     (王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展[J]. 中国腐蚀与防护学报, 2002; 22(3): 184-188)
[11] Li X B, Wang J, Wang W. The electrochemical method of biofilm monitoring in seawater[J]. J. Chin. Soc. Corros.Prot., 2005, 25(2): 84-87
     (李相波, 王佳, 王伟. 海洋环境微生物附着的电化学检测技术[J]. 中国腐蚀与防护学报, 2005,25(2): 84-87)
[12] Wang W, Wang J, Xu H B, et al. Surface analysis methods used in microbially influenced corrosion study[J]. J. Chin. Soc.Corros. Prot., 2007, 27(1): 60-64
     (王伟, 王佳, 徐海波等. 微生物腐蚀研究方法中的表面分析技术[J]. 中国腐蚀与防护学报, 2007, 27(1): 60-64)
[13] Ma S D, Sun H Y, Huang G Q, et al. Effect of marine fouling creatures on corrosion of carbon steel[J]. J. Chin.Soc. Corros. Prot., 2000, 20(3): 177-182
     (马士德, 孙虎元, 黄桂桥等. 海洋污损生物对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2000, 20(3): 177-182)
[14] Wang J, Li X B, Wang W. The effect of microorganism attachment on the open-circuit-potential of passive metals in seawater[J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 263-267
     (王佳, 李相波, 王伟. 海水环境中微生物附着对钝性金属开路电位的影响[J]. 中国腐蚀与防护学报, 2004, 24(5): 263-267)

[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!