Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (3): 191-198    DOI:
技术报告 Current Issue | Archive | Adv Search |
INFLUENCE OF TWO-ALKALI METHOD ON CORROSION BEHAVIOR FOR TITANIUM IN BITTERN SOLUTION
GONG Min; JIANG Wei; ZOU Zhen; CHEN Jian; LIANG Gang
College of Materials and Chemical Engineering; Sichuan University of Science and Engineering;Zigong  643000
Download:  PDF(1507KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of the resistance to corrosion behavior was studied for industrial titanium in bittern solution under the different concentrations of CO32- and the different values of pH and the different temperatures by electrochemical method and electrochemical impedance spectra and the weight loss in coupon tests in this paper. Electrode process was discussed and impedance was analyzed. The corrosion images were observed by metallurgical microscope after the mass loss tests. The results showed that the resistance to corrosion enhanced obviously for the metal system decreased gradually with increasing the concentration of CO32- and increasing the pH value, and decreased with rising up temperature. The resistance to corrosion enhanced first and then decreased oppositely with increasing the immersion time and the value of Vp was the biggest after 7 days immersion for titanium in bittern solution. The electrode reaction was irreversible and controlled by both activation polarization and diffusiveness for titanium in bittern medium.

Key words:  bittern      two-alkali method      corrosion      optical microscope      electrode reaction     
Received:  30 July 2007     
ZTFLH: 

TG174.2

 
Corresponding Authors:  JIANG Wei     E-mail:  ilyjiangwei@126.com

Cite this article: 

GONG Min JIANG Wei ZOU Zhen CHEN Jian LIANG Gang. INFLUENCE OF TWO-ALKALI METHOD ON CORROSION BEHAVIOR FOR TITANIUM IN BITTERN SOLUTION. J Chin Soc Corr Pro, 2009, 29(3): 191-198.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I3/191

[1] Zeng Q N. Anti-corrosion properties of stainless steel and application of duplex stainless steel in the equipment for salt making[J]. China Well and Rock Salt, 2003, 34(3): 34-38
    (曾庆楠. 不锈钢耐蚀性及双相钢在制盐设备中的应用[J]. 中国井矿盐,2003,34(3):34-38)
[2] Liang Y T, Yang X Q, Liang B. Discussion on metal preventing corrupted in high salt halogen environment[J]. Foundry Technol., 2003, 24(4): 309-310
    (梁义田,杨雪琴,梁蓓.高盐卤环境中金属防腐蚀问题探讨[J]. 铸造技术,2003,24(4):309-310)
[3] Wei Y H. Current situation and market prospects of Chinese titanium products industry[J]. Nonferr. Met. Process, 2004, 33(1): 14-17
    (卫晏华. 我国钛材工业的发展现状及市场展望[J]. 有色金属加工,2004,33(1):14-17)
[4] Chen C F, Zhao G X, Yan M L. Characteristics of CO$_2$\linebreak corrosion scales on Cr-containing N80 steel[J]. J. Chin. Soc. Corros. Prot., 2002, 22(6): 335-338
    (陈长风,赵国仙,严密林. 含Cr油套管钢CO$_2$腐蚀产物膜特征[J]. 中国腐蚀与防护学报,2002,22(6):335-338)
[5] Zhao G X, Chen C F, Lu M X. The formation of product scale and mass transfer channels during CO$_2$ corrosion[J]. J. Chin.Soc. Corros. Prot. 2002, 22(6): 363-366
    (赵国仙,陈长风,路民旭. CO$_2$腐蚀的产物膜及膜中物质交换通道的形成[J]. 中国腐蚀与防护学报,2002,22(6):363-366)
[6] Lv X H, Zhao G X, Lu M X. A comparison study on dynamic and static corrosion of N80 steel induced by CO$_2$[J]. Corros. Sci. Prot. Technol., 2003, 15(1): 5-8
    (吕祥鸿,赵国仙,路民旭. N80钢动态和静态CO$_2$腐蚀行为对比研究[J]. 腐蚀科学与防护技术,2003,15(1):5-8)
[7] Zhou Q, Wang J G, Zhou Y. Law of carbon dioxide corrosion and advances in research[J]. J. Gansu Sci., 2005, 17(1): 37-40
    (周琦,王建刚,周毅.二氧化碳的腐蚀规律及研究进展[J].甘肃科学学报,2005,17(1):37-40)
[8] Lin G F, Bai Z Q, Zhao X W. Effect of temperature on scales of carbon dioxide corrosion products[J].Acta Pet.Sin., 2004, 25(3): 101-105
    (林冠发,白真权,赵新伟.温度对二氧化碳腐蚀产物膜形貌特征的影响[J].石油学报,2004,25(3):101-105)
[9] Li A Q, Zhang Q, Wen J B. Effect of temperature on CO$_2$ corrosion scales of tubular steels[J]. Trans. Mater. Heat Treat., 2004, 25(1): 79-83
    (李全安,张清,文九巴.温度对油管钢CO$_2$腐蚀产物膜的影响[J].材料热处理学报,2004,25(1):79-83)
[10] Wei B M. Metal Corrosion Theory and Application[M].Beijing:Chemical Industry Press, 1984
     (魏宝明. 金属腐蚀理论及应用[M]. 北京:化学工业出版社,1984)
[11] Zhang X Y, Di C, Lei L C. Corrosion and Control of CO$_2$[M]. Beijing: Chemical Industry Press, 2000
     (张学元,邸超,雷良才.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000)
[12] Jiang H Y, Yao A L, Jiang C C. Corrosive mechanism research on the P110 casing steel in saturated brine[J]. Inner Mongolia Petrochem. Ind., 2006, 11: 80-80
     (蒋宏业,姚安林,蒋常春. P110套管钢在饱和盐水中的腐蚀机理研究[J]. 内蒙古石油化工,2006,11:80-81)
[13] Rick P C Wong, Jennifer E Wong, Viola I Birss. The reductive deposition of quaternary pyridinium corrosion inhibitor multilayer on glassy carbon electrodes[J].Can. J. Chem,2004,82:1536-1544
[14] Ferreira V, Tenreiro A, Abrantes L M. Electrochemical, microgravimetric and AFM studies of polythionine films application as new support for the immobilization of nucleotides[J]. Sens. Actuators B,2006,119:632-641
[15] H. Otma$\breve{\rm c}$i$\acute{\rm c}$, J. Telegdi, K. Papp. Protective properties of an inhibitor layer formed on copper in neutral chloride solution[J]. J.Appl. Electrochem.,2004,34: 545-550
[16] Bard A J, Faulkner L R.Electrochemical Methods, Fundamentals and Applications[M]. Beijing:Chemical Industry Press, 2005
     (阿伦. J. 巴德,拉里. R. 福克纳[美]. 电化学方法原理和应用[M]. 北京:化学工业出版社,2005)
[17] Liu P, Du Y P, Yang Q Q. Electrochemical behavior of Fe(Ⅱ) in acetamide-urea-NaBr-KBr melt and magnetic properties of inductively codeposited Nd-Fe film[J]. Electrochim.Acta,2006,52:710-714
[18] Zhang Y L, Sun D T, Guo G L. Transfer rule of equivalent circuits of similar plots on the impedance complex plane and on the capacitance complex plane for an AC impedance measurement(Ⅱ)[J]. Chem. J. Chin. Univ.,2000, 21(7): 1086-1092
     (张亚莉,孙典亭,郭国霖. 电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则(Ⅱ)[J]. 高等学校化学学报,2000,21(7):1086-1092)
[19] Song G L,Cao C N, Lin H C. General circuit for EIS of an irreversible electrode under electrochemical step control and parameters analysis of the circuit[J]. J. Chin. Soc.Corros. Prot., 1994, 14(2): 113-122
     (宋光铃,曹楚南,林海潮. 电化学控制条件下不可逆电极过程交流阻抗的统一换算电路和电化学参数解析[J]. 中国腐蚀与防护学报,1994,14(2):113-122)
[20]Rasa Pauliukaite, Ana Maria Chiorcea Paquim, Ana Maria Oliveira Brett. Electrochemical, EIS and AFM characterization of biosensors: Trioxysilane sol-gel encapsulated glucose oxidase with two different redox mediators[J]. Electrochim. Acta,2006,52:1-8

[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!