|
|
Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids |
HU Lihua1, YI Hualei1, YANG Weijian2, SUN Chong2, SUN Jianbo2( ) |
1. CNOOC Research Institute Co., Ltd., Beijing 100028, China 2. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China |
|
Cite this article:
HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 576-584.
|
Abstract CO2 induced pipeline corrosion is one of main concerns for the safe implementation and large-scale application of Carbon Capture, Utilization and Storage (CCUS) technology. Reasonably limiting the water content in supercritical CO2 transport environments containing multiple impurities is crucial for the corrosion control of the pipeline. Herein, the effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2 transport environments with/without impurities of O2, H2S, SO2 and NO2 was investigated by means of simulated corrosion test with high-temperature and high-pressured autoclave, and surface analysis technology. Concurrently, the influence mechanism of impurities on the corrosion of the steel in supercritical CO2 transport environments with different water contents was discussed. The results show that X65 steel only undergoes slight corrosion in supercritical CO2-H2O environment even if the water content reaches a saturated solubility of 0.4114%, and the corrosion rate is 0.0013 mm/a. However, when O2, H2S, SO2 and NO2 coexist in supercritical CO2-H2O environment, the corrosion rate of X65 steel increases from 0.0181 mm/a to 0.2901 mm/a as the water content varies from 0.002% to 0.4114%. The impurities and their interactions significantly promote the formation of corrosive aqueous phase, therefore exacerbating the corrosion of X65 steel. The corrosion process of X65 steel in the environment with low water content is controlled by the products of impurity reactions, whereas the impurities and the products of impurity reactions jointly dominate the corrosion process of the steel in the environment with high water content.
|
Received: 18 July 2023
32134.14.1005.4537.2023.227
|
|
Fund: Major Scientific Research Program of CNOOC During the 14th Five-Year Plan Period(KJGG-2022-12-CCUS-0103) |
Corresponding Authors:
Sun Jianbo, E-mail: sunjianbo@upc.edu.cn
|
1 |
Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review [J]. Int. Mater. Rev., 2017, 62: 1
doi: 10.1080/09506608.2016.1176306
|
2 |
Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 379
|
|
孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
|
3 |
Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
|
|
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
|
4 |
Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
|
|
原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15
|
5 |
Lu S J, Zhang J J, Yang F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. J. Nanjing Univ. (Nat. Sci.), 2022, 58: 944
|
|
陆诗建, 张娟娟, 杨菲 等. CO2管道输送技术进展与未来发展浅析 [J]. 南京大学学报(自然科学), 2022, 58: 944
|
6 |
Choi Y S, Nešic S. Effect of impurities on the corrosion behavior of carbon steel in supercritical CO2-water environments [A]. Corrosion 2010 [C]. San Antonio, 2010: 10196
|
7 |
Cui G, Yang Z Q, Liu J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment [J]. Int. J. Greenh. Gas Control, 2019, 90: 102814
doi: 10.1016/j.ijggc.2019.102814
|
8 |
Eldevik F, Graver B, Torbergsen L E, et al. Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines [J]. Energy Procedia, 2009, 1: 1579
doi: 10.1016/j.egypro.2009.01.207
|
9 |
Lee J Y, Keener T C, Yang Y J. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants [J]. J. Air Waste Manag. Assoc., 2009, 59: 725
doi: 10.3155/1047-3289.59.6.725
|
10 |
Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
doi: 10.1016/j.corsci.2018.03.041
|
11 |
Sun C, Wang Y, Sun J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. J. Supercrit. Fluids, 2016, 116: 70
doi: 10.1016/j.supflu.2016.05.006
|
12 |
Brown J, Graver B, Gulbrandsen E, et al. Update of DNV recommended practice RP-J202 with focus on CO2 corrosion with impurities [J]. Energy Procedia, 2014, 63: 2432
doi: 10.1016/j.egypro.2014.11.265
|
13 |
Hua Y, Barker R, Neville A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 [J]. Int. J. Greenh. Gas Control, 2015, 37: 412
doi: 10.1016/j.ijggc.2015.03.031
|
14 |
de Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenh. Gas Control, 2008, 2: 478
doi: 10.1016/j.ijggc.2008.04.006
|
15 |
Buit L, Ahmad M, Mallon W, et al. CO2 EuroPipe study of the occurrence of free water in dense phase CO2 transport [J]. Energy Procedia, 2011, 4: 3056
doi: 10.1016/j.egypro.2011.02.217
|
16 |
Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport [J]. J. Supercrit. Fluids, 2012, 67: 14
doi: 10.1016/j.supflu.2012.03.006
|
17 |
McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: has half the story been neglected? [J]. Energy Procedia, 2009, 1: 3415
doi: 10.1016/j.egypro.2009.02.131
|
18 |
Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
|
|
赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
|
19 |
Sun C, Liu J X, Sun J B, et al. Corrosion behaviors of X65 steel in gaseous CO2 environment containing impurities [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2022, 46(3): 129
|
|
孙 冲, 刘建新, 孙建波 等. 含杂质气态CO2环境中X65钢腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2022, 46(3): 129
|
20 |
Brion D. ETUDE par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau [J]. Appl. Surf. Sci., 1980, 5: 133
doi: 10.1016/0378-5963(80)90148-8
|
21 |
Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
doi: 10.1016/j.supflu.2011.06.007
|
22 |
Siriwardane R V, Cook J M. Interactions of SO2 with sodium deposited on silica [J]. J. Colloid Interface Sci., 1985, 108: 414
doi: 10.1016/0021-9797(85)90280-2
|
23 |
Asami K, Hashimoto K. The X-ray photo-electron spectra of several oxides of iron and chromium [J]. Corros. Sci., 1977, 17: 559
doi: 10.1016/S0010-938X(77)80002-4
|
24 |
McIntyre N S, Zetaruk D G, Owen D. X-Ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy [J]. J. Electrochem. Soc., 1979, 126: 750
doi: 10.1149/1.2129132
|
25 |
Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 1990, 2: 186
doi: 10.1021/cm00008a021
|
26 |
Allen G C, Curtis M T, Hooper A J, et al. X-Ray photoelectron spectroscopy of iron–oxygen systems [J]. J. Chem. Soc., Dalton Trans., 1974, (14): 1525
|
27 |
de Donato P, Mustin C, Benoit R, et al. Spatial distribution of iron and sulphur species on the surface of pyrite [J]. Appl. Surf. Sci., 1993, 68: 81
doi: 10.1016/0169-4332(93)90217-Y
|
28 |
Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure [J]. Phys. Scr., 1970, 1: 286
doi: 10.1088/0031-8949/1/5-6/020
|
29 |
Kelemen S R, George G N, Gorbaty M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach [J]. Fuel, 1990, 69: 939
doi: 10.1016/0016-2361(90)90001-7
|
30 |
Xiang Y, Wang Z, Li Z, et al. Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities [J]. Corros. Eng., Sci. Technol., 2013, 48: 395
doi: 10.1179/1743278213Y.0000000099
|
31 |
Yan K, Xiang Y, Chen X L. Investigation on corrosion characteristics of pipeline in CO2 ocean storage system [J]. Corros. Sci. Prot. Technol., 2019, 31: 672
|
|
颜 开, 向 勇, 陈晓玲. CO2海洋封存系统管道腐蚀特性研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 672
|
32 |
Dugstad A, Halseid M, Morland B. Testing of CO2 specifications with respect to corrosion and bulk phase reactions [J]. Energy Procedia, 2014, 63: 2547
doi: 10.1016/j.egypro.2014.11.277
|
33 |
Dugstad A, Halseid M, Morland B. Experimental techniques used for corrosion testing in dense phase CO2 with flue gas impurities [A]. Corrosion 2014 [C]. San Antonio, 2014: 4383
|
34 |
Sun C, Sun J B, Wang Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 193
doi: 10.1016/j.corsci.2016.02.032
|
35 |
Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
doi: 10.1016/j.corsci.2022.110729
|
36 |
Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines [J]. Energy Procedia, 2013, 37: 2877
doi: 10.1016/j.egypro.2013.06.173
|
37 |
Xu M H, Zhang Q, Yang X X, et al. Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2 [J]. J. Supercrit. Fluids, 2016, 107: 286
doi: 10.1016/j.supflu.2015.09.017
|
38 |
Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|