Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 585-600    DOI: 10.11902/1005.4537.2023.242
Current Issue | Archive | Adv Search |
Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution
FU Jiangyue1,2, GUO Jianxi3, YANG Yange2(), LENG Zhe1(), WANG Wen4
1. School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China
2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Naval Logistics Academy, Tianjin 300450, China
4. Shengyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 585-600.

Download:  HTML  PDF(32156KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Erosion corrosion behavior of a newly developed high strength low alloy (HSLA) steel in flowing 3.5%NaCl solution was systematically investigated via a home-made rotating erosion device, mass loss measurement, electrochemical impedance spectroscopy and potentiodynamic polarization curve measurement, as well as macroscopic/microscopic characterization of corrosion morphology and Raman spectroscopy. The results revealed that the mass loss of the HSLA steel in flowing 3.5%NaCl solution exceeded that in static immersion test by over 10 times. Failure of the HSLA steel in both static immersion and dynamic erosion conditions exhibited three distinct stages. Degradation of the HSLA steel in static immersion conditions primarily manifested in the second and third stages. In contrast, the corrosion resistance of the HSLA steel in dynamic erosion conditions rapidly declined in the first stage. Flow erosion may hinder the formation of a stable corrosion product scale of α-FeOOH. The relevant accelerating corrosion mechanism may primarily be ascribed to the following two aspects: accelerating the mass transfer of O2, Cl- and other species, and compromising the passivation film as well as the integrity of the corrosion product film.

Key words:  high strength low alloy steel      erosion corrosion      single phase flow      electrochemical impedance spectroscopy (EIS)      potentiodynamic polarization     
Received:  07 August 2023      32134.14.1005.4537.2023.242
ZTFLH:  TG171  
Fund: National Natural Science Foundation of China(51401217)
Corresponding Authors:  YANG Yange, E-mail: ygyang@imr.ac.cn;
LENG Zhe, E-mail: lengzhe@zjou.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.242     OR     https://www.jcscp.org/EN/Y2024/V44/I3/585

Fig.1  Optical microscope of HSLA steel
Fig.2  Rotary erosion device: (a) front view, (b) vertical view
Fig.3  Mass losses (a) and corrosion rates (b) of HSLA steel during static immersion and dynamic erosion
Fig.4  Proportions of mass losses caused by accelerated corrosion of corrosive fluid and static immersion
Fig.5  Changes of low frequency impedance modulus of HSLA steel during static immersion and dynamic erosion
Fig.6  EIS results of HSLA steel after static immersion: (a, b) stage Ⅰ, (c, d) stage Ⅱ, (e, f) stage Ⅲ
Fig.7  EIS results of HSLA steel after dynamic erosion: (a, b) stage Ⅰ, (c, d) stage Ⅱ, (e, f) stage Ⅲ
Fig.8  Equivalent circuits of EIS of HSLA steel after static immersion (a) and dynamic erosion (b)
Fig.9  Variations of corrosion product layer resistance (a) and charge transfer resistance (b) of HSLA steel with time
Fig.10  Polarization curves of HSLA steel after static immersion for different time: (a) stage Ⅰ, (b) stage Ⅱ, (c) stage Ⅲ
Fig.11  Polarization curves of HSLA steel after dynamic erosion for different time: (a) stage Ⅰ, (b) stage Ⅱ, (c) stage Ⅲ
StateTime / hEcorr / VIcorr / A·cm-2Eb / VIp / A·cm-2
Static immersion0-0.4832.88 × 10-6-0.3411.51 × 10-5
2-0.5673.28 × 10-6-0.3384.50 × 10-5
12-0.4932.02 × 10-6
72-0.5394.68 × 10-6-0.3986.50 × 10-5
216-0.6618.34 × 10-6-0.3941.31 × 10-4
288-0.6349.42 × 10-6-0.3831.47 × 10-4
480-0.5864.55 × 10-6-0.3776.50 × 10-5
Dynamic flushing0-0.4793.05 × 10-6-0.3411.51 × 10-5
2-0.5994.02 × 10-6-0.4024.90 × 10-5
12-0.6165.68 × 10-6-0.3511.16 × 10-4
72-0.6741.84 × 10-5
216-0.6023.42 × 10-5
288-0.5603.90 × 10-5
480-0.5198.06 × 10-5
Table 1  Fitting parameters of polarization curves of HSLA steel after static immersion and dynamic erosion
Fig.12  Macroscopic morphologies of HSLA steel after static immersion for 2 h (a), 12 h (b), 72 h (c), 216 h (d), 288 h (e),384 h (f) and 480 h (g)
Fig.13  Macroscopic morphologies of HSLA steel after dynamic erosion for 2 h (a), 12 h (b), 72 h (c), 216 h (d), 288 h (e),384 h (f) and 480 h (g)
Fig.14  SEM image of microstructure of HSLA steel
Fig.15  Microscopic morphologies of HSLA steel after static immersion for 2 h (a), 12 h (b), 72 h (c), 216 h (d), 288 h (e),384 h (f) and 480 h (g)
Fig.16  Microscopic morphologies of HSLA steel after dynamic erosion for 2 h (a), 12 h (b), 72 h (c), 216 h (d), 288 h (e), 384 h (f) and 480 h (g)
Fig.17  Raman spectra of corrosion products formed on HSLA steel after static immersion (a) and dynamic erosion (b) for different time
PhaseRaman shift / cm-1
Lepidocrocite (γ-FeOOH)166, 217, (248-257), 310, 350, (376-393), (478-530), (526-530), (650-655), 713, (1300-1310)
Goethite (α-FeOOH)203, (241-250), (298-307), (385-399), (414-415), (474-483), (549-554), 684, 1002, 1113, 1304
Akaganeite (β-FeOOH)139, (308-314), 331, (385-390), (415-420), (497-499), (526-541), (720-745)
Magnetite (Fe3O4)(298-306), (535-550), 616, (663-670)
Maghemite (γ-Fe2O3)(339-386), (461-512), (500-506), (671-717), (700-720), (1400-1440)
Hematite (α-Fe2O3)(220-228), (238-250), (288-299), (400-415), (497-502), (609-625), 670, (1320-1330)
Table 2  Raman shifts of various typical corrosion products in literatures[47~50]
Fig.18  Corrosion mechanism of HSLA steel during static immersion: (a) stage Ⅰ, (b) stage Ⅱ, (c) stage Ⅲ
Fig.19  Corrosion mechanism of HSLA steel during dynamic erosion: (a) stage Ⅰ, (b) stage Ⅱ, (c) stage Ⅲ
1 Rashid M S. High-strength, low-alloy steels [J]. Science, 1980, 208: 862
pmid: 17772810
2 Skobir D A. High-strength low-alloy (HSLA) steels: visokotrdna malolegirana (HSLA) konstrukcijska jekla [J]. Mater. Tehnol., 2011, 45: 295
3 Czyryca E J, Link R E, Wong R J, et al. Development and certification of HSLA-100 steel for naval ship construction [J]. Nav. Eng. J., 1990, 102: 63
4 Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
5 Zhang X W, Wu W J, Fu H, et al. The effect of corrosion evolution on the stress corrosion cracking behavior of mooring chain steel [J]. Corros. Sci., 2022, 203: 110316
doi: 10.1016/j.corsci.2022.110316
6 Xin Y T, Song K, Li Y, et al. Environmentally assisted stress corrosion cracking behaviour of low alloy steel in SO2-containing nacl solution [J]. J. Mater. Res. Technol., 2022, 19: 3255
doi: 10.1016/j.jmrt.2022.06.066
7 Zhao Y L, Ye F X, Zhang G, et al. Investigation of erosion-corrosion behavior of Q235B steel in liquid-solid flows [J]. Pet. Sci., 2022, 19: 2358
doi: 10.1016/j.petsci.2022.05.020
8 Rameshk M, Soltanieh M, Masoudpanah S M. Effects of flow velocity and impact angle on erosion-corrosion of an API-5 L X65 steel coated by plasma nitriding of hard chromium underlayer [J]. J. Mater. Res. Technol., 2020, 9: 10054
doi: 10.1016/j.jmrt.2020.07.013
9 Rajahram S S, Harvey T J, Wood R J K. Evaluation of a semi-empirical model in predicting erosion–corrosion [J]. Wear, 2009, 267: 1883
doi: 10.1016/j.wear.2009.03.002
10 Stack M M, Stott F H, Wood G C. Review of mechanisms of erosion-corrosion of alloys at elevated temperatures [J]. Wear, 1993, 162-164: 706
doi: 10.1016/0043-1648(93)90070-3
11 Karafyllias G, Galloway A, Humphries E. The effect of low pH in erosion-corrosion resistance of high chromium cast irons and stainless steels [J]. Wear, 2019, 420/421: 79
12 Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
王 晓, 刘 峰, 李 焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 119
13 Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 399
李 强, 唐 晓, 李 焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
14 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
朱 娟, 张乔斌, 陈 宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
15 Melchers R E. Effect of temperature on the marine immersion corrosion of carbon steels [J]. Corrosion, 2002, 58: 768
doi: 10.5006/1.3277660
16 Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel [J]. Wear, 1997, 211: 84
doi: 10.1016/S0043-1648(97)00072-0
17 Wu L, Ma A L, Zhang L M, et al. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution [J]. Corros. Sci., 2022, 201: 110304
doi: 10.1016/j.corsci.2022.110304
18 Levy A V, Chik P. The effects of erodent composition and shape on the erosion of steel [J]. Wear, 1983, 89: 151
doi: 10.1016/0043-1648(83)90240-5
19 Liebhard M, Levy A. The effect of erodent particle characteristics on the erosion of metals [J]. Wear, 1991, 151: 381
doi: 10.1016/0043-1648(91)90263-T
20 Islam M A, Farhat Z N. Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate [J]. Wear, 2014, 311: 180
doi: 10.1016/j.wear.2014.01.005
21 Lin N, Arabnejad H, Shirazi S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel [J]. Powder Technol., 2018, 336: 70
doi: 10.1016/j.powtec.2018.05.039
22 Arabnejad H, Uddin H, Panda K, et al. Testing and modeling of particle size effect on erosion of steel and cobalt-based alloys [J]. Powder Technol., 2021, 394: 1186
doi: 10.1016/j.powtec.2021.09.057
23 Nguyen Q B, Nguyen D N, Murray R, et al. The role of abrasive particle size on erosion characteristics of stainless steel [J]. Eng. Fail. Anal., 2019, 97: 844
doi: 10.1016/j.engfailanal.2019.01.020
24 Nguyen V B, Nguyen Q B, Zhang Y W, et al. Effect of particle size on erosion characteristics [J]. Wear, 2016, 348-349: 126
doi: 10.1016/j.wear.2015.12.003
25 Okonkwo P C, Grami S, Murugan S, et al. Effect of erosion on corrosion of API X120 steel in relation to erodent particle size [J]. J. Iron Steel Res. Int., 2020, 27: 691
doi: 10.1007/s42243-019-00338-3
26 Anand K, Hovis S K, Conrad H, et al. Flux effects in solid particle erosion [J]. Wear, 1987, 118: 243
doi: 10.1016/0043-1648(87)90146-3
27 Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
28 Suchánek J, Kuklík V, Zdravecká E. Influence of microstructure on erosion resistance of steels [J]. Wear, 2009, 267: 2092
doi: 10.1016/j.wear.2009.08.004
29 Levy A V. The solid particle erosion behavior of steel as a function of microstructure [J]. Wear, 1981, 68: 269
doi: 10.1016/0043-1648(81)90177-0
30 Shadley J R, Shirazi S A, Dayalan E, et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand [J]. Corrosion, 1998, 54: 972
doi: 10.5006/1.3284819
31 Xu Y Z, Zhang Q L, Zhou Q P, et al. Flow accelerated corrosion and erosion-corrosion behavior of marine carbon steel in natural seawater [J]. npj Mater. Degrad., 2021, 5: 56
doi: 10.1038/s41529-021-00205-1
32 Neville A, Hodgkiess T, Dallas J T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications [J]. Wear, 1995, 186-187: 497
doi: 10.1016/0043-1648(95)07145-8
33 Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries [J]. Tribol. Int., 2002, 35: 643
doi: 10.1016/S0301-679X(02)00055-5
34 Zhou S, Stack M M, Newman R C. Characterization of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques [J]. Corrosion, 1996, 52: 934
doi: 10.5006/1.3292087
35 Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262: 791
doi: 10.1016/j.wear.2006.08.029
36 Rajahram S S, Harvey T J, Wood R J K. Erosion–corrosion resistance of engineering materials in various test conditions [J]. Wear, 2009, 267: 244
doi: 10.1016/j.wear.2009.01.052
37 Lotz U, Heitz E. Flow-dependent corrosion. I. Current understanding of the mechanisms involved [J]. Mater. Corros., 1983, 34: 454
38 Bitter J G A. A study of erosion phenomena part I [J]. Wear, 1963, 6: 5
doi: 10.1016/0043-1648(63)90003-6
39 Levy A V. The platelet mechanism of erosion of ductile metals [J]. Wear, 1986, 108: 1
doi: 10.1016/0043-1648(86)90085-2
40 Zheng Y G, Yu H, Jiang S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4% nacl solution [J]. Wear, 2008, 264: 1051
doi: 10.1016/j.wear.2007.08.008
41 Ige O O, Umoru L E. Effects of shear stress on the erosion-corrosion behaviour of X-65 carbon steel: a combined mass-loss and profilometry study [J]. Tribol. Int., 2016, 94: 155
doi: 10.1016/j.triboint.2015.07.040
42 Chung R J, Jiang J, Pang C, et al. Erosion-corrosion behaviour of high manganese steel used in slurry pipelines [J]. Wear, 2023, 530/531: 204885
43 Chung R J, Jiang J, Pang C, et al. Erosion-corrosion behaviour of steels used in slurry pipelines [J]. Wear, 2021, 477: 203771
doi: 10.1016/j.wear.2021.203771
44 Aguirre J, Walczak M, Rohwerder M. The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: effect of nominal flow velocity and oxygen content [J]. Wear, 2019, 438/439: 203053
45 Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556
doi: 10.11902/1005.4537.2014.239
46 Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 115
胡宗武, 刘建国, 邢 蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115
doi: 10.11902/1005.4537.2019.002
47 Morcillo M, Chico B, Alcántara J, et al. SEM/Micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel [J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
48 Nauer G, Strecha P, Brinda-Konopik N, et al. Spectroscopic and thermoanalytical characterization of standard substances for the identification of reaction products on iron electrodes [J]. J. Therm. Anal., 1985, 30: 813
doi: 10.1007/BF01913309
49 Larroumet D, Greenfield D, Akid R, et al. Raman spectroscopic studies of the corrosion of model iron electrodes in sodium chloride solution [J]. J. Raman Spectrosc., 2007, 38: 1577
doi: 10.1002/jrs.v38:12
50 Demoulin A, Trigance C, Neff D, et al. The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings [J]. Corros. Sci., 2010, 52: 3168
doi: 10.1016/j.corsci.2010.05.019
51 Dubois F, Mendibide C, Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance [J]. Corros. Sci., 2008, 50: 3401
doi: 10.1016/j.corsci.2008.09.027
52 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
53 Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels in stagnant water [J]. Mater. Chem. Phys., 2023, 302: 127745
doi: 10.1016/j.matchemphys.2023.127745
[1] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[3] YANG Xinyu, LI Zhen, DUAN Tigang, HUANG Guosheng, MA Li, LIU Feng, JIANG Dan. Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[4] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[5] REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[6] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[7] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[8] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[9] Aiguo JIANG,Jianwen ZHANG,Yanan XIN,Xiaoming CONG,Shi DONG. Numerical Simulation of Multiphase Erosion-corrosion of Tubes Bundles of Hydrocracking Air Cooler[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[10] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[11] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[14] Jiali SUI,Xiangbo LI,Zhifeng LIN,Tianrong ZHAN. Corrosion Resistance of Two Thermal Sprayed Zn-Al Alloy Coatings in Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2016, 36(5): 471-475.
[15] LIU Guiqun, ZHENG Yugui, JIANG Shengli, JING Junhang, DONG Weijuan, ZENG Hong, SI Pinxian. Stability and Erosion Corrosion Behavior of Corrosion Product Film of Q235 Carbon Steel and Cr5Mo Low Alloy Steel in Simulated Oil Refinery Media[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
No Suggested Reading articles found!