|
|
Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution |
FU Jiangyue1,2, GUO Jianxi3, YANG Yange2( ), LENG Zhe1( ), WANG Wen4 |
1. School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China 2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3. Naval Logistics Academy, Tianjin 300450, China 4. Shengyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 585-600.
|
Abstract Erosion corrosion behavior of a newly developed high strength low alloy (HSLA) steel in flowing 3.5%NaCl solution was systematically investigated via a home-made rotating erosion device, mass loss measurement, electrochemical impedance spectroscopy and potentiodynamic polarization curve measurement, as well as macroscopic/microscopic characterization of corrosion morphology and Raman spectroscopy. The results revealed that the mass loss of the HSLA steel in flowing 3.5%NaCl solution exceeded that in static immersion test by over 10 times. Failure of the HSLA steel in both static immersion and dynamic erosion conditions exhibited three distinct stages. Degradation of the HSLA steel in static immersion conditions primarily manifested in the second and third stages. In contrast, the corrosion resistance of the HSLA steel in dynamic erosion conditions rapidly declined in the first stage. Flow erosion may hinder the formation of a stable corrosion product scale of α-FeOOH. The relevant accelerating corrosion mechanism may primarily be ascribed to the following two aspects: accelerating the mass transfer of O2, Cl- and other species, and compromising the passivation film as well as the integrity of the corrosion product film.
|
Received: 07 August 2023
32134.14.1005.4537.2023.242
|
|
Fund: National Natural Science Foundation of China(51401217) |
Corresponding Authors:
YANG Yange, E-mail: ygyang@imr.ac.cn; LENG Zhe, E-mail: lengzhe@zjou.edu.cn
|
1 |
Rashid M S. High-strength, low-alloy steels [J]. Science, 1980, 208: 862
pmid: 17772810
|
2 |
Skobir D A. High-strength low-alloy (HSLA) steels: visokotrdna malolegirana (HSLA) konstrukcijska jekla [J]. Mater. Tehnol., 2011, 45: 295
|
3 |
Czyryca E J, Link R E, Wong R J, et al. Development and certification of HSLA-100 steel for naval ship construction [J]. Nav. Eng. J., 1990, 102: 63
|
4 |
Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
|
5 |
Zhang X W, Wu W J, Fu H, et al. The effect of corrosion evolution on the stress corrosion cracking behavior of mooring chain steel [J]. Corros. Sci., 2022, 203: 110316
doi: 10.1016/j.corsci.2022.110316
|
6 |
Xin Y T, Song K, Li Y, et al. Environmentally assisted stress corrosion cracking behaviour of low alloy steel in SO2-containing nacl solution [J]. J. Mater. Res. Technol., 2022, 19: 3255
doi: 10.1016/j.jmrt.2022.06.066
|
7 |
Zhao Y L, Ye F X, Zhang G, et al. Investigation of erosion-corrosion behavior of Q235B steel in liquid-solid flows [J]. Pet. Sci., 2022, 19: 2358
doi: 10.1016/j.petsci.2022.05.020
|
8 |
Rameshk M, Soltanieh M, Masoudpanah S M. Effects of flow velocity and impact angle on erosion-corrosion of an API-5 L X65 steel coated by plasma nitriding of hard chromium underlayer [J]. J. Mater. Res. Technol., 2020, 9: 10054
doi: 10.1016/j.jmrt.2020.07.013
|
9 |
Rajahram S S, Harvey T J, Wood R J K. Evaluation of a semi-empirical model in predicting erosion–corrosion [J]. Wear, 2009, 267: 1883
doi: 10.1016/j.wear.2009.03.002
|
10 |
Stack M M, Stott F H, Wood G C. Review of mechanisms of erosion-corrosion of alloys at elevated temperatures [J]. Wear, 1993, 162-164: 706
doi: 10.1016/0043-1648(93)90070-3
|
11 |
Karafyllias G, Galloway A, Humphries E. The effect of low pH in erosion-corrosion resistance of high chromium cast irons and stainless steels [J]. Wear, 2019, 420/421: 79
|
12 |
Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
|
|
王 晓, 刘 峰, 李 焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 119
|
13 |
Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 399
|
|
李 强, 唐 晓, 李 焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
|
14 |
Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
|
|
朱 娟, 张乔斌, 陈 宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
|
15 |
Melchers R E. Effect of temperature on the marine immersion corrosion of carbon steels [J]. Corrosion, 2002, 58: 768
doi: 10.5006/1.3277660
|
16 |
Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel [J]. Wear, 1997, 211: 84
doi: 10.1016/S0043-1648(97)00072-0
|
17 |
Wu L, Ma A L, Zhang L M, et al. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution [J]. Corros. Sci., 2022, 201: 110304
doi: 10.1016/j.corsci.2022.110304
|
18 |
Levy A V, Chik P. The effects of erodent composition and shape on the erosion of steel [J]. Wear, 1983, 89: 151
doi: 10.1016/0043-1648(83)90240-5
|
19 |
Liebhard M, Levy A. The effect of erodent particle characteristics on the erosion of metals [J]. Wear, 1991, 151: 381
doi: 10.1016/0043-1648(91)90263-T
|
20 |
Islam M A, Farhat Z N. Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate [J]. Wear, 2014, 311: 180
doi: 10.1016/j.wear.2014.01.005
|
21 |
Lin N, Arabnejad H, Shirazi S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel [J]. Powder Technol., 2018, 336: 70
doi: 10.1016/j.powtec.2018.05.039
|
22 |
Arabnejad H, Uddin H, Panda K, et al. Testing and modeling of particle size effect on erosion of steel and cobalt-based alloys [J]. Powder Technol., 2021, 394: 1186
doi: 10.1016/j.powtec.2021.09.057
|
23 |
Nguyen Q B, Nguyen D N, Murray R, et al. The role of abrasive particle size on erosion characteristics of stainless steel [J]. Eng. Fail. Anal., 2019, 97: 844
doi: 10.1016/j.engfailanal.2019.01.020
|
24 |
Nguyen V B, Nguyen Q B, Zhang Y W, et al. Effect of particle size on erosion characteristics [J]. Wear, 2016, 348-349: 126
doi: 10.1016/j.wear.2015.12.003
|
25 |
Okonkwo P C, Grami S, Murugan S, et al. Effect of erosion on corrosion of API X120 steel in relation to erodent particle size [J]. J. Iron Steel Res. Int., 2020, 27: 691
doi: 10.1007/s42243-019-00338-3
|
26 |
Anand K, Hovis S K, Conrad H, et al. Flux effects in solid particle erosion [J]. Wear, 1987, 118: 243
doi: 10.1016/0043-1648(87)90146-3
|
27 |
Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
|
|
任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
|
28 |
Suchánek J, Kuklík V, Zdravecká E. Influence of microstructure on erosion resistance of steels [J]. Wear, 2009, 267: 2092
doi: 10.1016/j.wear.2009.08.004
|
29 |
Levy A V. The solid particle erosion behavior of steel as a function of microstructure [J]. Wear, 1981, 68: 269
doi: 10.1016/0043-1648(81)90177-0
|
30 |
Shadley J R, Shirazi S A, Dayalan E, et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand [J]. Corrosion, 1998, 54: 972
doi: 10.5006/1.3284819
|
31 |
Xu Y Z, Zhang Q L, Zhou Q P, et al. Flow accelerated corrosion and erosion-corrosion behavior of marine carbon steel in natural seawater [J]. npj Mater. Degrad., 2021, 5: 56
doi: 10.1038/s41529-021-00205-1
|
32 |
Neville A, Hodgkiess T, Dallas J T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications [J]. Wear, 1995, 186-187: 497
doi: 10.1016/0043-1648(95)07145-8
|
33 |
Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries [J]. Tribol. Int., 2002, 35: 643
doi: 10.1016/S0301-679X(02)00055-5
|
34 |
Zhou S, Stack M M, Newman R C. Characterization of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques [J]. Corrosion, 1996, 52: 934
doi: 10.5006/1.3292087
|
35 |
Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262: 791
doi: 10.1016/j.wear.2006.08.029
|
36 |
Rajahram S S, Harvey T J, Wood R J K. Erosion–corrosion resistance of engineering materials in various test conditions [J]. Wear, 2009, 267: 244
doi: 10.1016/j.wear.2009.01.052
|
37 |
Lotz U, Heitz E. Flow-dependent corrosion. I. Current understanding of the mechanisms involved [J]. Mater. Corros., 1983, 34: 454
|
38 |
Bitter J G A. A study of erosion phenomena part I [J]. Wear, 1963, 6: 5
doi: 10.1016/0043-1648(63)90003-6
|
39 |
Levy A V. The platelet mechanism of erosion of ductile metals [J]. Wear, 1986, 108: 1
doi: 10.1016/0043-1648(86)90085-2
|
40 |
Zheng Y G, Yu H, Jiang S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4% nacl solution [J]. Wear, 2008, 264: 1051
doi: 10.1016/j.wear.2007.08.008
|
41 |
Ige O O, Umoru L E. Effects of shear stress on the erosion-corrosion behaviour of X-65 carbon steel: a combined mass-loss and profilometry study [J]. Tribol. Int., 2016, 94: 155
doi: 10.1016/j.triboint.2015.07.040
|
42 |
Chung R J, Jiang J, Pang C, et al. Erosion-corrosion behaviour of high manganese steel used in slurry pipelines [J]. Wear, 2023, 530/531: 204885
|
43 |
Chung R J, Jiang J, Pang C, et al. Erosion-corrosion behaviour of steels used in slurry pipelines [J]. Wear, 2021, 477: 203771
doi: 10.1016/j.wear.2021.203771
|
44 |
Aguirre J, Walczak M, Rohwerder M. The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: effect of nominal flow velocity and oxygen content [J]. Wear, 2019, 438/439: 203053
|
45 |
Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
|
|
彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556
doi: 10.11902/1005.4537.2014.239
|
46 |
Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 115
|
|
胡宗武, 刘建国, 邢 蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115
doi: 10.11902/1005.4537.2019.002
|
47 |
Morcillo M, Chico B, Alcántara J, et al. SEM/Micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel [J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
|
48 |
Nauer G, Strecha P, Brinda-Konopik N, et al. Spectroscopic and thermoanalytical characterization of standard substances for the identification of reaction products on iron electrodes [J]. J. Therm. Anal., 1985, 30: 813
doi: 10.1007/BF01913309
|
49 |
Larroumet D, Greenfield D, Akid R, et al. Raman spectroscopic studies of the corrosion of model iron electrodes in sodium chloride solution [J]. J. Raman Spectrosc., 2007, 38: 1577
doi: 10.1002/jrs.v38:12
|
50 |
Demoulin A, Trigance C, Neff D, et al. The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings [J]. Corros. Sci., 2010, 52: 3168
doi: 10.1016/j.corsci.2010.05.019
|
51 |
Dubois F, Mendibide C, Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance [J]. Corros. Sci., 2008, 50: 3401
doi: 10.1016/j.corsci.2008.09.027
|
52 |
Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
|
53 |
Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels in stagnant water [J]. Mater. Chem. Phys., 2023, 302: 127745
doi: 10.1016/j.matchemphys.2023.127745
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|