Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 797-806    DOI: 10.11902/1005.4537.2023.236
Current Issue | Archive | Adv Search |
Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel
GENG Zhenzhen1, ZHANG Yuzhu2(), DU Xiaojiang3, WU Hanhui1
1. School of Architectural Engineering, Chongqing Chemical Industry Vocational College, Chongqing 400020, China
2. School of Intelligent Engineering, Chongqing College of Mobile Communications, Chongqing 401520, China
3. Chongqing Hengshengdaye Architectural Design Co., Ltd., Chongqing 401120, China
Cite this article: 

GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 797-806.

Download:  HTML  PDF(8645KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The synergistic effect of S2- and Cl- on corrosion resistance of 316L austenitic stainless steel in artificial seawater with different S2- concentrations were studied by using electrochemical testing techniques, SEM, CLSM, EDS, and XPS. The results showed that S2- and Cl- have synergistic damaging effects on the corrosion resistance of 316L austenitic stainless steel. S2- inhibited passivation film generation by competitive adsorption with OH-, and the participation of S2- in the passivation process is conductive to the formation of FeS and MoS2, increasing the doping density but reducing the shielding performance of the passivation film, thus accelerating pitting induced by Cl-. As the S2- concentration increased from 0 to 100 mmol/L, the solution pH was increased from 8.2 to 12.8, resulting in a negative shift of the free-corrosion potential Ecorr by 0.328 V and an increase in the corrosion current density Icorr approximately one-fold. When the S2- concentration was greater than 0.1 mmol/L, 316L austenitic stainless steel lost its repassivation performance. When the S2- concentration was greater than 100 mmol/L, 316L austenitic stainless steel lost its passivation performance.

Key words:  316L austenitic stainless steel      S2-      Cl-      passivation film      corrosion resistance      synergistic effect     
Received:  01 August 2023      32134.14.1005.4537.2023.236
ZTFLH:  TG172.5  
Fund: China University Industry-Academic-Research Innovation Fund(2021BCC02003);Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202302405)
Corresponding Authors:  ZHANG Yuzhu, E-mail: yz_zhang@yeah.net

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.236     OR     https://www.jcscp.org/EN/Y2024/V44/I3/797

Fig.1  OCP (a), Nyquist plots (b), Bode plots (c) and cyclic potentiodynamic polarization curves (d) of 316L austenitic stainless steel in artificial seawater with different S2- concentrations

S2- concentrations

mmol·L-1

Rs

Ω·cm2

Rt

Ω·cm2

Yt

Ω-1·cm-2·s-n

nt

Rf

Ω·cm2

Yf

Ω-1·cm-2·s-n

nfχ2
025.683.01 × 1053.02 × 10-50.931.86 × 1057.81 × 10-50.861.2 × 10-3
0.125.342.33 × 1053.36 × 10-50.958.18 × 1048.82 × 10-50.931.5 × 10-3
125.761.80 × 1053.79 × 10-50.955.69 × 1049.67 × 10-50.922.0 × 10-3
1024.821.72 × 1054.11 × 10-50.944.38 × 1041.13 × 10-40.791.7 × 10-3
10024.321.39 × 1054.22 × 10-50.863.53 × 1041.22 × 10-40.861.5 × 10-3
Table 1  Fitting parameters of EIS of 316L austenitic stainless steel in artificial seawater with different S2- concentrations
S2- concentrations / mmol·L-1Icorr / μA·cm-2Ecorr / VEb / VErp / VEb-Erp / V
00.115-0.1990.310-0.1630.473
0.10.128-0.2980.331-0.1690.500
10.161-0.3720.358--
100.194-0.4260.446--
1000.250-0.527---
Table 2  Fitting parameters of cyclic potentiodynamic polarization curves of 316L austenitic stainless steel in artificial seawater with different S2- concentrations
Fig.2  CLSM surface images of 316L austenitic stainless steel after cyclic potentiodynamic polarization in artificial seawater with different S2- concentrations: (a) 0 mmol/L, (b) 0.1 mmol/L, (c) 1 mmol/L, (d) 10 mmol/L, (e) 100 mmol/L
Fig.3  Pitting morphology (a) and EDS result (b) of 316L austenitic stainless steel after cyclic potentiodynamic polarization in artificial seawater with 100 mmol/L S2-
Fig.4  I-t curves of potentiostatic polarization for 316L austenitic stainless steel in artificial seawater with different S2- concentrations (a), and Nyquist plots (b), Bode plots (c), Mott-Schottky curves and donor concentration ND (d) in artificial seawater after potentiostatic polarization

S2- concentrations

mmol·L-1

Rs

Ω·cm2

Rt

Ω·cm2

Yt

Ω-1·cm-2·s-n

nt

Rf

Ω·cm2

Yf

Ω-1·cm-2·s-n

nfχ2
023.795.00 × 1052.80 × 10-50.947.69 × 1061.46 × 10-60.838.0 × 10-4
0.123.804.65 × 1053.00 × 10-50.936.94 × 1062.88 × 10-60.859.0 × 10-4
123.652.77 × 1053.37 × 10-50.933.55 × 1061.16 × 10-60.931.2 × 10-3
1023.882.59 × 1053.80 × 10-50.922.67 × 1061.88 × 10-50.771.4 × 10-3
10023.671.76 × 1053.91 × 10-50.949.34 × 1053.67 × 10-50.922.0 × 10-3
Table 3  Fitting parameters of EIS of 316L austenitic stainless steel after potentiostatic polarization in artificial seawater with different S2- concentrations
Fig.5  SEM images and EDS elemental mappings of 316L austenitic stainless steel after potentiostatic polarization in artificial seawater with different S2- concentrations: (a) 0 mmol/L, (b) 0.1 mmol/L, (c) 1 mmol/L, (d) 10 mmol/L, (e) 100 mmol/L
Fig.6  XPS spectra of passivating film formed on 316L austenitic stainless steel after potentiostatic polarization in artificial seawater with 100 mmol/L S2-: (a) Fe 2p, (b) Cr 2p, (c) Ni 2p, (d) Mo 3d, (e) O 1s, (f) S 2p
1 Bao M Y, Ren C Q, Zheng Y P, et al. Adaptability evaluation of 316L stainless steel based on pitting corrosion in acid gas field [J]. Mater. Rep., 2016, 30(17): 10, 35
鲍明昱, 任呈强, 郑云萍 等. 基于点蚀的316L不锈钢在酸性气田环境中的适应性评价 [J]. 材料导报, 2016, 30(17): 10, 35
2 Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
赵国仙, 黄 静, 薛 艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557
doi: 10.11902/1005.4537.2019.230
3 Hu S B, Liu R, Liu L, et al. Influence of temperature and hydrostatic pressure on the galvanic corrosion between 90/10 Cu-Ni and AISI 316L stainless steel [J]. J. Mater. Res. Technol., 2021, 13: 1402
doi: 10.1016/j.jmrt.2021.05.067
4 Xin S S, Li M C. Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater [J]. Corros. Sci., 2014, 81: 96
doi: 10.1016/j.corsci.2013.12.004
5 Chang Q. Effect of deep ocean on critical pitting temperature of 316L stainless steel [D]. Harbin: Harbin Engineering University, 2016
常 青. 深海环境对316L不锈钢临界点蚀温度的影响 [D]. 哈尔滨: 哈尔滨工程大学, 2016
6 Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys [J]. Desalination, 2008, 228: 61
doi: 10.1016/j.desal.2007.08.007
7 Xin S S, Li M C. Pitting resistance of anodic passive films formed on 316L stainless steel in the concentrated artificial seawater [J]. Russ. J. Electrochem., 2014, 50: 281
doi: 10.1134/S1023193513090097
8 Zhang Z, Wu C, Wang Z P, et al. Investigation of the crevice corrosion behavior of 316L stainless steel in sulfate-reducing bacteria-inoculated artificial seawater using the wire beam electrode [J]. J. Mater. Eng. Perform., 2022, 31: 10393
doi: 10.1007/s11665-022-07023-9
9 Hou R Z, Lu S H, Chen S Q, et al. The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater [J]. Bioelectrochemistry, 2023, 149: 108310
doi: 10.1016/j.bioelechem.2022.108310
10 Zhang L H, Li C J, Pan L, et al. Corrosion behavior of 316L stainless steel in simulated oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 625
张龙华, 李长君, 潘 磊 等. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 625
doi: 10.11902/1005.4537.2020.255
11 Zhou X C, Cui Q Q, Jia J H, et al. Influence of Cl- concentration on stress corrosion cracking behavior of 316L stainless steel in alkaline NaCl/Na2S solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 526
周霄骋, 崔巧棋, 贾静焕 等. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 526
doi: 10.11902/1005.4537.2016.206
12 Song D D, Jia Y J, Tu X H, et al. Effect of Cl- on stress corrosion of cold deformed 316L austenitic stainless steel in H2S environment [J]. Surf. Technol., 2020, 49(3): 23
宋东东, 贾玉杰, 涂小慧 等. Cl-对冷变形316L奥氏体不锈钢在H2S环境下应力腐蚀的影响 [J]. 表面技术, 2020, 49(3): 23
13 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
14 Gudić S, Vrsalović L, Matošin A, et al. Corrosion behavior of stainless steel in seawater in the presence of sulfide [J]. Appl. Sci., 2023, 13(7): 4366
doi: 10.3390/app13074366
15 Li S Y, Song J L, Wei H, et al. Corrosion behavior of Cu-Ti alloy in simulated S2- contaminated seawater [J]. Rare Metal Mater. Eng., 2022, 51: 895
李思远, 宋坚磊, 卫 欢 等. Cu-Ti合金在模拟S2-污染海水中的腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 895
16 Hamdy A S, Sa'eh A G, Shoeib M A, et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions [J]. Electrochim. Acta, 2007, 52: 7068
doi: 10.1016/j.electacta.2007.05.034
17 Wang Z, Feng Z, Zhang L, et al. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels [J]. Chin. J. Eng., 2020, 42: 549
王 竹, 冯 喆, 张 雷 等. 电化学方法在不锈钢腐蚀研究中的应用现状及发展趋势 [J]. 工程科学学报, 2020, 42: 549
18 Bosch R W, Schepers B, Vankeerberghen M. Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water [J]. Electrochim. Acta, 2004, 49: 3029
doi: 10.1016/j.electacta.2004.01.062
19 Wang J Z, Li X H, Wang J Q, et al. Development of a scratch electrode system in high temperature high pressure water [J]. Corros. Sci., 2015, 95: 125
doi: 10.1016/j.corsci.2015.03.006
20 Lee J B. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique [J]. Mater. Chem. Phys., 2006, 99: 224
doi: 10.1016/j.matchemphys.2005.10.016
21 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
doi: 10.1016/j.corsci.2009.02.026
22 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions [J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
23 Li D G, Chen D R, Feng Y R, et al. Investigation on the composition and semi-conductive property of the passive film on 22Cr duplex stainless steel [J]. Acta Chim. Sinica, 2008, 66: 2329
李党国, 陈大融, 冯耀荣 等. 22Cr双相不锈钢钝化膜组成及其半导体性能研究 [J]. 化学学报, 2008, 66: 2329
24 Zhang Y, Li Q, Wang S G. Corrosion resistance of 2507 duplex stainless steel in NaClO solution [J]. J. Mater. Eng., 2016, 44(1):108
doi: 10.11868/j.issn.1001-4381.2016.01.017
张 艳, 李 倩, 王胜刚. 2507双相不锈钢在NaClO溶液中的腐蚀性能 [J]. 材料工程, 2016, 44(1): 108
25 Wang L W, Dou Y P, Han S K, et al. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater [J]. Appl. Surf. Sci., 2020, 504: 144340
doi: 10.1016/j.apsusc.2019.144340
[1] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] LIU Zebang, RAN Boyuan, PEI Heng, LUO Kailin, ZHAO Zhibin, HAN Peng, QIANG Yujie. Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.
[3] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[4] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[5] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[6] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[7] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[8] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[9] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[10] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[11] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[12] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[13] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[14] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[15] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
No Suggested Reading articles found!