Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 567-575    DOI: 10.11902/1005.4537.2023.207
Current Issue | Archive | Adv Search |
Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials
HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin()
Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing 102413, China
Cite this article: 

HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin. Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 567-575.

Download:  HTML  PDF(9093KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lead-cooled fast reactor is a promising reactor type of the fourth-generation reactors. In the design of the cladding material, it is necessary to pay attention to the compatibility of the cladding material with the molten Pb-Bi alloy, and its resistance to liquid metal corrosion, especially, the properties of structural materials will be significantly degraded by the synergistic action of corrosive molten Pb-Bi alloy and external stress. The Small Punch Test (SPT) is a testing method, that uses a small size sample to assess the changes in the mechanical properties of a structural material in service conditions. This method can extract samples directly from the structural material in use without compromising its integrity. Therefore, the SPT is very suitable for situations where the number of materials under study is limited or where materials in service are studied. This paper briefly introduces the SPT technique, summarizes the research on the correlation between the SPT and the standard size test at home and abroad, expounds the research on mechanical properties of key materials by using small punch technique, especially expounds the application of SPT in the study of liquid metal embrittlement effect (LME) of structural materials. The results can provide technical methods and theoretical support for the application of small punch technique in the study of liquid Pb-Bi alloy induced embrittlement of engineering materials.

Key words:  small punch test (SPT)      structural material      mechanical property      liquid metal embrittlement (LME)     
Received:  30 June 2023      32134.14.1005.4537.2023.207
ZTFLH:  TL341  
Fund: National Magnetic Confinement Nuclear Fusion Energy Development Research Project(2022YFE03120001);National Atomic Energy Agency Nuclear Materials Technology Innovation Center(ICNM-2023-ZH-07)
Corresponding Authors:  LONG Bin, E-mail: binlong@ciae.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.207     OR     https://www.jcscp.org/EN/Y2024/V44/I3/567

Fig.1  Characteristic load-displacement curves of SPT standard penetration test[9]
Fig.2  Punch diagram: (a) hemispherical punch, (b) spherical punch[10]
Fig.3  Diagram for determination of Fy[8]
Fig.4  SEM fracture images of a SPF test on a Ti-6Al-4V specimen: (a) macro fracture of SPT test sample, (b) fatigue fringe of uniaxial strain fatigue test sample, (c, d) fracture strip of SPT test sample[26]
Fig.5  Load-displacement curves of unirradiated and neutron-irradiated T91 steel at 200oC[5]
Fig.6  Figure of small punch test device[29]
Fig.7  Load-displacement curves of SPT samples of T91 steel treated at 300oC in air (a) and LBE (b)[29]
Fig.8  Load-displacement curves (a) and fracture images (b, c, d) of T91 steel in oxygen saturated LBE at 300oC under the loading rates of 0.05 mm/min (b1, b2), 0.005 mm/min (c1, c2) and 0.0005 mm/min (d1, d2)[4]
ConditionSpecimen

O2 exposure time

h

O2 pressure

MPa

Main type of superficial oxide

Estimated thickness

(oxide atomic monolayer)

Non-oxidizedDNO200--
Low oxidationD0.5O20.50.002Cr2O32~3
Medium oxidationD4O24~80.002Fe1+x Cr2-x O45~6
Air-oxidizedDAO21000.021Fe2O311~12
Table 1  Oxidation products of T91 steel under different conditions
Fig.9  SPT curves of T91 steel at 250oC (a) and 300oC (d), and fracture surface morphologies (b, c, e, f) for DNO2 (b), D0.5O2 (c) and D4O2 (e) oxidized at 300oC, and for DAO2 oxidized at 250oC (f)[32]
1 Wu Y C, Wang M H, Huang Q Y, et al. Development status and prospects of lead-based reactors [J]. Nucl. Sci. Eng., 2015, 35: 213
doi: 10.1016/0029-5493(75)90199-5
吴宜灿, 王明煌, 黄群英 等. 铅基反应堆研究现状与发展前景 [J]. 核科学与工程, 2015, 35: 213
2 Zhong W H, Tong Z F, Ning G S, et al. Research progress in small specimen test technology for mechanical property of irradiated material [J]. At. Energy Sci. Technol., 2019, 53: 1894
钟巍华, 佟振峰, 宁广胜 等. 辐照用小尺寸样品力学性能表征技术研究进展 [J]. 原子能科学技术, 2019, 53: 1894
doi: 10.7538/yzk.2019.youxian.0365
3 Lacalle R, Álvarez J A, Gutiérrez-Solana F. Analysis of key factors for the interpretation of small punch test results [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31: 841
doi: 10.1111/ffe.2008.31.issue-10
4 Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid metal [J]. Mater. Sci. Eng., 2014, 608A: 242
5 Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
6 Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties [J]. J. Nucl. Mater., 1981, 104: 1545
doi: 10.1016/0022-3115(82)90820-0
7 Milička K, Dobeš F. Small punch testing of P91 steel [J]. Int. J. Press. Vessels Pip., 2006, 83: 625
doi: 10.1016/j.ijpvp.2006.07.009
8 Arunkumar S. Overview of small punch test [J]. Met. Mater. Int., 2020, 26: 719
doi: 10.1007/s12540-019-00454-5
9 Rasche S, Kuna M. Improved small punch testing and parameter identification of ductile to brittle materials [J]. Int. J. Press. Vessels Pip., 2015, 125: 23
doi: 10.1016/j.ijpvp.2014.09.001
10 Holmström S, Li Y, Dymacek P, et al. Creep strength and minimum strain rate estimation from small punch creep tests [J]. Mater. Sci. Eng., 2018, 731A: 161
11 Pathak K K, Dwivedi K K, Shukla M, et al. Influence of key test parameters on SPT results [J]. Indian J. Eng. Mater. Sci., 2009, 16: 385
12 Kannan C, Bhattacharya S, Sehgal D K, et al. Effect of specimen thickness and punch diameter in evaluation of small punch test parameters toward characterization of mechanical properties of Cr-Mo steels [J]. J. Test. Eval., 2014, 42(6): JTE20130299
13 Kurtz S M, Herr M, Edidin A A. The effect of specimen thickness on the mechanical behavior of UHMWPE characterized by the small punch test [C]. Symposium on Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene for Joint Replacements. Miami, FL, USA: 2004: 192
14 Kazakeviciute J, Rouse J P, Focatiis D, et al. Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters [J]. J. Strain Anal. Eng. Des., 2022, 57(4): 227
doi: 10.1177/03093247211025208
15 Wang Z X, Shi H J, Lu J, et al. Small punch testing for assessing the fracture properties of the reactor vessel steel with different thicknesses [J]. Nucl. Eng. Des., 2008, 238: 3186
doi: 10.1016/j.nucengdes.2008.07.013
16 Ge H G, Huang Q Y, Xin J P, et al. Small specimen test techniques applied to evaluate the mechanical properties of CLAM steel [J]. J. Fusion Energy, 2015, 34(5): 1124
doi: 10.1007/s10894-015-9931-6
17 Siegl J, Haušild P, Janča A, et al. Characterisation of mechanical properties by small punch test [J]. Key Eng. Mater., 2004, 606: 15
doi: 10.4028/www.scientific.net/KEM
18 Bruchhausen M, Holmström S, Simonovski I, et al. Recent developments in small punch testing: tensile properties and DBTT [J]. Theor. Appl. Fract. Mech., 2016, 86: 2
doi: 10.1016/j.tafmec.2016.09.012
19 Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
doi: 10.1016/0001-6160(86)90142-2
20 McNaney J, Lucas G E, Odette G R. Application of ball punch tests to evaluating fracture mode transition in ferritic steels [J]. J. Nucl. Mater., 1991, 179-181: 429
doi: 10.1016/0022-3115(91)90116-O
21 Campitelli E N, Spätig P, Bonadé R, et al. Assessment of the constitutive properties from small ball punch test: experiment and modeling [J]. J. Nucl. Mater., 2004, 335(3): 366
doi: 10.1016/j.jnucmat.2004.07.052
22 Altstadt E, Bergner F, Houska M. Use of the small punch test for the estimation of ductile-to-brittle transition temperature shift of irradiated steels [J]. Nucl. Mater. Energy, 2021, 26: 100918
23 Norris S D, Parker J D. Deformation processes during disc bend loading [J]. Mater. Sci. Technol., 1996, 12: 163
doi: 10.1179/mst.1996.12.2.163
24 García T E, Rodríguez C, Belzunce F J, et al. Estimation of the mechanical properties of metallic materials by means of the small punch test [J]. J. Alloy. Compd., 2014, 582: 708
doi: 10.1016/j.jallcom.2013.08.009
25 Ha J S, Fleury E. Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness [J]. Int. J. Press. Vessels Pip., 1998, 75: 707
doi: 10.1016/S0308-0161(98)00075-1
26 Lancaster R J, Jeffs S P, Illsley H W, et al. Development of a novel methodology to study fatigue properties using the small punch test [J]. Mater. Sci. Eng., 2019, 748A: 21
27 Matijasevic M, Lucon E, Almazouzi A. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300oC [J]. J. Nucl. Mater., 2008, 377: 101
doi: 10.1016/j.jnucmat.2008.02.063
28 Van den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
29 Serre I, Vogt J B. Heat treatment effect of T91 martensitic steel on liquid metal embrittlement [J]. J. Nucl. Mater., 2008, 376: 330
doi: 10.1016/j.jnucmat.2008.02.018
30 Long B, Dai Y. Investigation of LBE embrittlement effects on the fracture properties of T91 [J]. J. Nucl. Mater., 2008, 376: 341
doi: 10.1016/j.jnucmat.2008.02.022
31 Liu J, Yan W, Sha W, et al. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic [J]. J. Nucl. Mater., 2016, 473: 189
doi: 10.1016/j.jnucmat.2016.02.032
32 Auger T, Serre I, Lorang G, et al. Role of oxidation on LME of T91 steel studied by small punch test [J]. J. Nucl. Mater., 2008, 376: 336
doi: 10.1016/j.jnucmat.2008.02.076
[1] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] JI Yuefei, HAO Long, WANG Jianqiu, LI Qinghua, ZHENG Yue, YU Pei, KE Wei. Research Progress on Compatibility Between Alkalizing Agents and Materials in PWR Secondary Circuit[J]. 中国腐蚀与防护学报, 2024, 44(2): 267-277.
[3] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[4] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[5] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[6] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[7] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[8] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[9] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[10] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[11] Lei CHEN,Zhiliang PEI,Jinquan XIAO,Jun GONG,Chao SUN. Characterization of Structure and Property of TiAlN Coatings Deposited by Filtered Arc Ion Plating[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[12] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Irradiation Assisted Stress Corrosion Cracking of Core Structural Materials[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[13] MA Cheng, PENG Qunjia, HAN En-Hou, KE Wei. Review of Stress Corrosion Cracking of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[14] YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.
[15] SUN Shuangqing ZHENG Qifei LI Defu CHEN Jie WEN Junguo. LONG-TERM ATMOSPHERIC CORROSION BEHAVIOR OF LY12 ALUMINIUM ALLOY[J]. 中国腐蚀与防护学报, 2009, 29(6): 442-446.
No Suggested Reading articles found!