|
|
Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials |
HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin( ) |
Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing 102413, China |
|
Cite this article:
HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin. Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 567-575.
|
Abstract Lead-cooled fast reactor is a promising reactor type of the fourth-generation reactors. In the design of the cladding material, it is necessary to pay attention to the compatibility of the cladding material with the molten Pb-Bi alloy, and its resistance to liquid metal corrosion, especially, the properties of structural materials will be significantly degraded by the synergistic action of corrosive molten Pb-Bi alloy and external stress. The Small Punch Test (SPT) is a testing method, that uses a small size sample to assess the changes in the mechanical properties of a structural material in service conditions. This method can extract samples directly from the structural material in use without compromising its integrity. Therefore, the SPT is very suitable for situations where the number of materials under study is limited or where materials in service are studied. This paper briefly introduces the SPT technique, summarizes the research on the correlation between the SPT and the standard size test at home and abroad, expounds the research on mechanical properties of key materials by using small punch technique, especially expounds the application of SPT in the study of liquid metal embrittlement effect (LME) of structural materials. The results can provide technical methods and theoretical support for the application of small punch technique in the study of liquid Pb-Bi alloy induced embrittlement of engineering materials.
|
Received: 30 June 2023
32134.14.1005.4537.2023.207
|
|
Fund: National Magnetic Confinement Nuclear Fusion Energy Development Research Project(2022YFE03120001);National Atomic Energy Agency Nuclear Materials Technology Innovation Center(ICNM-2023-ZH-07) |
Corresponding Authors:
LONG Bin, E-mail: binlong@ciae.ac.cn
|
1 |
Wu Y C, Wang M H, Huang Q Y, et al. Development status and prospects of lead-based reactors [J]. Nucl. Sci. Eng., 2015, 35: 213
doi: 10.1016/0029-5493(75)90199-5
|
|
吴宜灿, 王明煌, 黄群英 等. 铅基反应堆研究现状与发展前景 [J]. 核科学与工程, 2015, 35: 213
|
2 |
Zhong W H, Tong Z F, Ning G S, et al. Research progress in small specimen test technology for mechanical property of irradiated material [J]. At. Energy Sci. Technol., 2019, 53: 1894
|
|
钟巍华, 佟振峰, 宁广胜 等. 辐照用小尺寸样品力学性能表征技术研究进展 [J]. 原子能科学技术, 2019, 53: 1894
doi: 10.7538/yzk.2019.youxian.0365
|
3 |
Lacalle R, Álvarez J A, Gutiérrez-Solana F. Analysis of key factors for the interpretation of small punch test results [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31: 841
doi: 10.1111/ffe.2008.31.issue-10
|
4 |
Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid metal [J]. Mater. Sci. Eng., 2014, 608A: 242
|
5 |
Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
|
6 |
Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties [J]. J. Nucl. Mater., 1981, 104: 1545
doi: 10.1016/0022-3115(82)90820-0
|
7 |
Milička K, Dobeš F. Small punch testing of P91 steel [J]. Int. J. Press. Vessels Pip., 2006, 83: 625
doi: 10.1016/j.ijpvp.2006.07.009
|
8 |
Arunkumar S. Overview of small punch test [J]. Met. Mater. Int., 2020, 26: 719
doi: 10.1007/s12540-019-00454-5
|
9 |
Rasche S, Kuna M. Improved small punch testing and parameter identification of ductile to brittle materials [J]. Int. J. Press. Vessels Pip., 2015, 125: 23
doi: 10.1016/j.ijpvp.2014.09.001
|
10 |
Holmström S, Li Y, Dymacek P, et al. Creep strength and minimum strain rate estimation from small punch creep tests [J]. Mater. Sci. Eng., 2018, 731A: 161
|
11 |
Pathak K K, Dwivedi K K, Shukla M, et al. Influence of key test parameters on SPT results [J]. Indian J. Eng. Mater. Sci., 2009, 16: 385
|
12 |
Kannan C, Bhattacharya S, Sehgal D K, et al. Effect of specimen thickness and punch diameter in evaluation of small punch test parameters toward characterization of mechanical properties of Cr-Mo steels [J]. J. Test. Eval., 2014, 42(6): JTE20130299
|
13 |
Kurtz S M, Herr M, Edidin A A. The effect of specimen thickness on the mechanical behavior of UHMWPE characterized by the small punch test [C]. Symposium on Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene for Joint Replacements. Miami, FL, USA: 2004: 192
|
14 |
Kazakeviciute J, Rouse J P, Focatiis D, et al. Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters [J]. J. Strain Anal. Eng. Des., 2022, 57(4): 227
doi: 10.1177/03093247211025208
|
15 |
Wang Z X, Shi H J, Lu J, et al. Small punch testing for assessing the fracture properties of the reactor vessel steel with different thicknesses [J]. Nucl. Eng. Des., 2008, 238: 3186
doi: 10.1016/j.nucengdes.2008.07.013
|
16 |
Ge H G, Huang Q Y, Xin J P, et al. Small specimen test techniques applied to evaluate the mechanical properties of CLAM steel [J]. J. Fusion Energy, 2015, 34(5): 1124
doi: 10.1007/s10894-015-9931-6
|
17 |
Siegl J, Haušild P, Janča A, et al. Characterisation of mechanical properties by small punch test [J]. Key Eng. Mater., 2004, 606: 15
doi: 10.4028/www.scientific.net/KEM
|
18 |
Bruchhausen M, Holmström S, Simonovski I, et al. Recent developments in small punch testing: tensile properties and DBTT [J]. Theor. Appl. Fract. Mech., 2016, 86: 2
doi: 10.1016/j.tafmec.2016.09.012
|
19 |
Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
doi: 10.1016/0001-6160(86)90142-2
|
20 |
McNaney J, Lucas G E, Odette G R. Application of ball punch tests to evaluating fracture mode transition in ferritic steels [J]. J. Nucl. Mater., 1991, 179-181: 429
doi: 10.1016/0022-3115(91)90116-O
|
21 |
Campitelli E N, Spätig P, Bonadé R, et al. Assessment of the constitutive properties from small ball punch test: experiment and modeling [J]. J. Nucl. Mater., 2004, 335(3): 366
doi: 10.1016/j.jnucmat.2004.07.052
|
22 |
Altstadt E, Bergner F, Houska M. Use of the small punch test for the estimation of ductile-to-brittle transition temperature shift of irradiated steels [J]. Nucl. Mater. Energy, 2021, 26: 100918
|
23 |
Norris S D, Parker J D. Deformation processes during disc bend loading [J]. Mater. Sci. Technol., 1996, 12: 163
doi: 10.1179/mst.1996.12.2.163
|
24 |
García T E, Rodríguez C, Belzunce F J, et al. Estimation of the mechanical properties of metallic materials by means of the small punch test [J]. J. Alloy. Compd., 2014, 582: 708
doi: 10.1016/j.jallcom.2013.08.009
|
25 |
Ha J S, Fleury E. Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness [J]. Int. J. Press. Vessels Pip., 1998, 75: 707
doi: 10.1016/S0308-0161(98)00075-1
|
26 |
Lancaster R J, Jeffs S P, Illsley H W, et al. Development of a novel methodology to study fatigue properties using the small punch test [J]. Mater. Sci. Eng., 2019, 748A: 21
|
27 |
Matijasevic M, Lucon E, Almazouzi A. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300oC [J]. J. Nucl. Mater., 2008, 377: 101
doi: 10.1016/j.jnucmat.2008.02.063
|
28 |
Van den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
|
29 |
Serre I, Vogt J B. Heat treatment effect of T91 martensitic steel on liquid metal embrittlement [J]. J. Nucl. Mater., 2008, 376: 330
doi: 10.1016/j.jnucmat.2008.02.018
|
30 |
Long B, Dai Y. Investigation of LBE embrittlement effects on the fracture properties of T91 [J]. J. Nucl. Mater., 2008, 376: 341
doi: 10.1016/j.jnucmat.2008.02.022
|
31 |
Liu J, Yan W, Sha W, et al. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic [J]. J. Nucl. Mater., 2016, 473: 189
doi: 10.1016/j.jnucmat.2016.02.032
|
32 |
Auger T, Serre I, Lorang G, et al. Role of oxidation on LME of T91 steel studied by small punch test [J]. J. Nucl. Mater., 2008, 376: 336
doi: 10.1016/j.jnucmat.2008.02.076
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|