Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 635-644    DOI: 10.11902/1005.4537.2023.192
Current Issue | Archive | Adv Search |
Corrosion Behavior of S420 Steel in Different Marine Zones
MA Heng1, TIAN Huiyun2(), LIU Yuxi3, WANG Yuexiang1, HE Kang1, CUI Zhongyu2, CUI Hongzhi2
1. Yinshan Section Steel Corporation of Laiwu Steel Group Ltd., Jinan 271104, China
2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
3. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
Cite this article: 

MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 635-644.

Download:  HTML  PDF(20844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of diverse marine zones on the corrosion behavior of low alloy steels exhibits unique environmental characteristics, leading to significant differences in the corrosion rate of steels, as well as the composition and structure of rust scales. In this paper, the corrosion behavior of S420 steel, exposed in four different marine zones, i.e. atmospheric, splash, tidal, and immersion zones in the sea area of Qingdao by 36° 06' N and 120° 25' E for one year, was assessed by means of mass loss measurement, macroscopic and microscopic morphology observation, three-dimensional morphology detection, and corrosion product analysis. The results show that S420 steel exhibits the highest corrosion rate in the tidal zone and the lowest corrosion rate in marine atmosphere. Which may be attributed to the water-holding ability of the rust scale, thus providing sufficient electrolyte for the cathodic reaction. On the other hand, in the tidal zone, the wet-dry cycle results in the increase of the Cl- concentration, accelerating the anodic reaction. The formed corrosion products are mainly composed of γ-Fe2O3, Fe3O4 and α/γ-FeOOH. The persistent presence of the electrolyte film may facilitate the formation of γ-FeOOH, making it dominant in the rust scales formed in tidal zone and full immersion zone. In the splash zone, the production of Fe3O4 may be promoted due to the synergist of adequate oxygen supply and wet-dry cycle, thus Fe3O4 is dominant in the formed rust scale. In the marine atmosphere, the thickness of the formed rust scale is the smallest, and the value of α/γ* is the largest, which has protective effect against further corrosion of the steel substrate to certain extent. In the tidal zone, the thickness of the formed rust scale is the highest and the value of α/γ* is the lowest, which is loose and porous, and the number and width of cracks within the rust scale are larger and wider, resulting in worst protective effect for the substrate. In other words, the S420 steel exhibits obvious localized corrosion characteristics with the maximum depth and high volume of pits in the tidal zone.

Key words:  low alloy steel      marine corrosion      pitting corrosion      rust layer      corrosion rate     
Received:  09 June 2023      32134.14.1005.4537.2023.192
ZTFLH:  TG178  
Fund: 2021 Taishan Industry Leading Talents Project and Key Research and Development Program of Shandong Province(2020CXGC010305)
Corresponding Authors:  TIAN Huiyun, E-mail: tianhuiyun@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.192     OR     https://www.jcscp.org/EN/Y2024/V44/I3/635

Fig.1  Macro corrosion morphologies of S420 steel after exposed corrosion in atmospheric zone (a), splash zone (b), tidal zone (c) and immersion zone (d)
Fig.2  Corrosion rate of S420 steel after 1 a exposure to atmospheric, splash, tidal, and immersion zone
Fig.3  Corrosion morphologies of S420 steel after 1 a exposure to atmospheric (a, b), splash (c, d), tidal (e, f) and immersion (g, h) zone
Fig.4  Cross-sectional morphologies and EDS results of the corrosion products of S420 steel after 1 a exposure to atmospheric (a), splash (b), tidal (c) and immersion (d) zone
Fig.5  Surface morphologies (a-d, a1-d1) and 3D topographies (a2-d2) of S420 steel after 1 a exposure to atmospheric (a, a1, a2), splash (b, b1, b2), tidal (c, c1, c2) and immersion (d, d1, d2) zone. The corrosion products has been chemically removed
Fig.6  Cumulative probability distribution of pit depth (a) and volume (b) of S420 steel after corrosion in different zones for 1 a
Fig.7  XRD patterns of the corrosion products formed on S420 steel after corrosion in different zones for 1 a (a) and the proportion of different constituting phases and α/γ* (b)
PhaseRaman shift / cm-1
Lepidocrocite (γ-FeOOH)(248-252)*, (378-380), (528-530), (478-530), (650-655), (1300-1310)
Goethite (α-FeOOH)(241-250), (298-301), (385-395)*, (478-483), (549-552), (680-685), (1000-1120)
Magnetite (Fe3O4)(298-302), (540-550), (663-670)*
Maghemite (γ-Fe2O3)350, (500-506)*, (700-720)*, (1400-1440)*
Table 1  Raman shift ranges of Raman spectra corresponding to the phases in the rust layers[18,24~26]
Fig.8  Phase distributions of the corrosion products formed on S420 steel after 1 a exposure to atmospheric (a), splash (b), tidal (c), and immersion (d) zone (G, L, and M represent goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and magnetite/maghemite (Fe3O4/γ-Fe2O3), respectively)
1 Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
2 Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903
doi: 10.1016/j.conbuildmat.2019.117903
3 Ma H C, Liu Z Y, Du C W, et al. Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere [J]. Mater. Sci. Eng., 2016, 650A: 93
4 Cui Z Y, Chen S S, Wang L W, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater containing thiosulfate [J]. J. Electrochem. Soc., 2017, 164: C856
doi: 10.1149/2.1901713jes
5 Li Y T, Hou B R, Li H L, et al. Corrosion behavior of steel in Chengdao offshore oil exploitation area [J]. Mater. Corros., 2004, 55: 305
6 Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet–dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
7 Yu J X, Wang H K, Yu Y, et al. Corrosion behavior of X65 pipeline steel: comparison of wet-dry cycle and full immersion [J]. Corros. Sci., 2018, 133: 276
doi: 10.1016/j.corsci.2018.01.007
8 Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
doi: 10.5006/1.3280597
9 Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, 642A: 22
10 Jeffrey R, Melchers R E. The changing topography of corroding mild steel surfaces in seawater [J]. Corros. Sci., 2007, 49: 2270
doi: 10.1016/j.corsci.2006.11.003
11 Gong K, Wu M, Liu G X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments [J]. Constr. Build. Mater., 2020, 235: 117440
doi: 10.1016/j.conbuildmat.2019.117440
12 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
13 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
14 Mao Y C, Zhu Y, Deng C M, et al. Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone [J]. Eng. Fail. Anal., 2022, 142: 106759
doi: 10.1016/j.engfailanal.2022.106759
15 Xia D H, Ji Y Y, Zhang R F, et al. On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—Part 1: corrosion initiation mechanism [J]. Corros. Sci., 2023, 213: 110985
doi: 10.1016/j.corsci.2023.110985
16 Zhou X B, Wu T Q, Tan L, et al. A study on corrosion of X80 steel in a simulated tidal zone [J]. J. Mater. Res. Technol., 2021, 12: 2224
doi: 10.1016/j.jmrt.2021.04.014
17 de Brito L V R, Coutinho R, Cavalcanti E H S, et al. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel [J]. Biofouling, 2007, 23: 193
pmid: 17653930
18 Morcillo M, Chico B, Alcántara J, et al. SEM/micro-raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel [J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
19 Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: a review [J]. Materials, 2017, 10: 406
doi: 10.3390/ma10040406
20 Lv M Y, Du M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. Biotechnol., 2018, 17: 431
doi: 10.1007/s11157-018-9473-2
21 Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
doi: 10.1016/j.corsci.2019.02.005
22 Huang Y L, Duan J Z, Ma S D. Effects of anaerobe in sea bottom sediment on the corrosion of carbon steel [J]. Mater. Corros., 2004, 55: 46
23 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
24 Yan M X, Li J, Wang Z C, et al. Atmospheric corrosion behavior of Q 460 and Q690 low alloy steels in antarctic environment [J/OL]. Acta Metall. Sin., 2023.
闫茂鑫, 李 杰, 王哲超 等. 南极大气环境下Q460和Q690低合金钢的腐蚀行为 [J/OL]. 金属学报, 2023.
25 Li C, Mu X, Wang C G, et al. Insight to atmosphere corrosion behavior of Q345NH steel in Wenchang tropical marine environment [J]. J. Mater. Res. Technol., 2023, 24: 5755
doi: 10.1016/j.jmrt.2023.04.128
26 Zhang T Y, Liu W, Chen L J, et al. On how the corrosion behavior and the functions of Cu, Ni and Mo of the weathering steel in environments with different NaCl concentrations [J]. Corros. Sci., 2021, 192: 109851
doi: 10.1016/j.corsci.2021.109851
27 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
doi: 10.1016/j.corsci.2022.110490
28 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
29 Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
30 Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
31 Fan Y, Yang W X, Wang J, et al. Corrosion behavior of Q690qE steel in a simulated coastal-industrial environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 669
范 益, 杨文秀, 王 军 等. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 669
32 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
33 Venkatraman M S, Cole I S, Emmanuel B. Model for corrosion of metals covered with thin electrolyte layers: pseudo-steady state diffusion of oxygen [J]. Electrochim. Acta, 2011, 56: 7171
doi: 10.1016/j.electacta.2011.05.009
34 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
35 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
doi: 10.1016/0010-938X(83)90024-0
[1] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[3] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[4] PENG Liyuan, WU Xinqiang, ZHANG Ziyu, TAN Jibo. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[5] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[6] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[7] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[8] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[10] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[11] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[12] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[13] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[14] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[15] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
No Suggested Reading articles found!