Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 669-678    DOI: 10.11902/1005.4537.2023.232
Current Issue | Archive | Adv Search |
Effect of Different Phytates on Corrosion Behaviors of Carbon Steel
ZHOU Long1, LU Jun1, DING Wenshan1, LI Hao1, TAO Tao1, SHI Chao1(), SHAO Yawei2, LIU Guangming1
1. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Cite this article: 

ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 669-678.

Download:  HTML  PDF(15477KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The study on the preparation and properties of new anti-rust pigments is of significance for the development of anticorrosion coatings. In this paper, phytates were prepared by reaction of sulfates with sodium phytate. The phytates were characterized using SEM, EDS, FT-IR, and XRD analysis. The results showed that the prepared phytates were amorphous containing obvious phosphate groups, and presented as spherical particles with a diameter of 300-400 nm. The solubilities of phytates in aqueous solution were analyzed through titration test. The corrosion behavior of Q235 steel in phytate-extracting solutions, which were acquired by soaking aluminum-, magnesium-, calcium-, manganese- and zinc-phytates, respectively, in 3.5%NaCl solution and then leaching, were studied via immersion test, Tafel polarization, and electrochemical impedance spectroscopy. The findings revealed that the corrosion rate of carbon steel increased in aluminum phytate-extracting solution due to the production of aluminum-acid (Al(OH)3). However, the corrosion rates decreased in the other four extracting solutions. Notably, the inhibition rate of zinc phytate was approximately 92.46%.

Key words:  Q235 steel      corrosion      phytate      inhibition     
Received:  27 July 2023      32134.14.1005.4537.2023.232
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(52001155);Natural Science Foundation of Jiangxi Province(20212BAB214038);Doctoral Scientific Research Foundation(EA201901056)
Corresponding Authors:  SHI Chao, E-mail: shichao@nchu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.232     OR     https://www.jcscp.org/EN/Y2024/V44/I3/669

Fig.1  Microstructures and EDS analysis results of zinc phosphate (a), zinc phytate (b), calcium phytate (c), manganese phytate (d) and aluminum phytate (e)
ExtractingCOPZnCaMnAl
Zinc phosphate23.1624.4915.2437.11000
Zinc phytate23.6956.2110.659.45000
Calcium phytate19.7163.638.7407.9200
Manganese phytate21.4558.349.570010.630
Aluminum phytate19.3535.823.8200041.01
Table 1  Chemical compositions of as-prepared five phytates (atomic fraction / %)
Fig.2  FT-IR spectra of as-prepared five phytates
Fig.3  XRD patterns of as-prepared five phytates
Extracting

Concentration of metal ion

mol·L-1

Concentration of phytate

mol·L-1

Zinc phytate8.31 × 10-41.39 × 10-4
Calcium phytate7.55 × 10-41.26 × 10-4
Manganese phytate3.92 × 10-46.53 × 10-5
Aluminum phytate1.06 × 10-33.53 × 10-4
Table 2  Titration data
Fig.4  Open-circuit potential changes of Q235 steel electrode in various phytate extracting solutions
Fig.5  Nyquist (a) and Bode (b) plots of Q235 steel electrode in various phytate extracting solutions
Fig.6  Equivalent circuit diagram
ExtractingRs / Ω·cm2Ct / Ω·cm-2·S nnRt / Ω·cm2ƞ / %
Zinc phosphate7.9228.986 × 10-40.688135256.36
Zinc phytate6.5353.524 × 10-40.692320481.59
Calcium phytate5.7033.775 × 10-40.738178967.02
Manganese phytate5.9505.739 × 10-40.704212172.18
Aluminum phytate5.6213.980 × 10-40.784362-62.98
Contrast6.0188.851 × 10-40.752590/
Table 3  Fitting parameters of EIS test results
Fig.7  Tafel curves of Q235 steel electrode in various phytate extracting solutions
ExtractingIcorr / A·cm-2Cathodic Tafel slopeAnodic Tafel slopeη / %
Zinc phosphate7.99 × 10-63.31817.27669.86
Zinc phytate2.01 × 10-69.5817.1792.46
Calcium phytate3.85 × 10-63.53530.77585.48
Manganese phytate2.74 × 10-65.12915.03889.66
Aluminum phytate5.53 × 10-54.4878.654-108.68
Contrast2.65 × 10-52.1737.684/
Table 4  Tafel fitting results of Q235 steel electrode in various phytate extracting solutions
Fig.8  Surface morphologies of Q235 steel after immersion in zinc phosphate (a1-a4), zinc phytate (b1-b4), calcium phytate (c1-c4), manganese phytate (d1-d4) and aluminum phytate (e1-e4) leaching solutions for 0 h (a1-e1), 12 h (a2-e2), 24 h (a3-e3) and 48 h (a4-e4)
Fig.9  Surface morphologies and EDS results of Q235 steel immersed for 48 h in zinc phosphate (a), zinc phytate (b), calcium phytate (c), manganese phytate (d) and aluminum phytate (e) leaching solutions
ExtractingCOPZnCaMnAlFe
Zinc phosphate16.1031.571.091.1800050.07
Zinc phytate21.3416.235.691.0500055.69
Calcium phytate12.8132.689.5602.370042.57
Manganese phytate15.6537.703.59001.56041.51
Aluminum phytate16.4444.543.820002.4936.53
Table 5  EDS analysis results of the surfaces of Q235 steel immersed in zinc phosphate, zinc phytate, calcium phytate, manganese phytate and aluminum phytate leaching solutions for 48 h (atomic fraction / %)
1 Li N, Ge J, Wang Y S. Research progress of coating preservatives [J]. Henan Build. Mater., 2018, (6): 107
李 娜, 葛 晶, 王杨松. 涂料防腐剂的研究进展 [J]. 河南建材, 2018, (6): 107
2 Peng X. Research on electrochemical corrosion behaviors and parameters of rusted carbon steel in marine environment [D]. Qingdao: Ocean University of China, 2013
彭 欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究 [D]. 青岛: 中国海洋大学, 2013
3 Jin L B, Liang X Y, Wang Z, et al. Research progress of carbon steel corrosion in seawater full immersion zone [J]. Corros. Prot., 2020, 41(10): 33
金立兵, 梁新亚, 王 珍 等. 碳钢在海水全浸区腐蚀的研究进展 [J]. 腐蚀与防护, 2020, 41(10): 33
4 Funke W. Problems and progress in organic coatings science and technology [J]. Prog. Org. Coat., 1997, 31: 5
doi: 10.1016/S0300-9440(97)00013-1
5 Deyá C, Blustein G, del Amo B, et al. Evaluation of eco-friendly anticorrosive pigments for paints in service conditions [J]. Prog. Org. Coat., 2010, 69: 1
doi: 10.1016/j.porgcoat.2010.03.011
6 Li K C, Zhuo M Q, Yi F Y, et al. Technological innovation trend of phosphate antirust ppigments [J]. Technol. Dev. Chem. Ind., 2021, 50(7): 46
李开成, 卓民权, 易芬远 等. 磷酸盐防锈颜料技术发展态势研究 [J]. 化工技术与开发, 2021, 50(7): 46
7 Naderi R, Mahdavian M, Darvish A. Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment [J]. Prog. Org. Coat., 2013, 76: 302
doi: 10.1016/j.porgcoat.2012.09.026
8 Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments [J]. Prog. Org. Coat., 2014, 77: 160
9 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
10 Yang L H, Li J Q, Lin C G, et al. Study of molybdenum/lanthanum-based composite conversion coatings on AZ31 magnesium alloy [J]. Appl. Surf. Sci., 2011, 257: 2838
doi: 10.1016/j.apsusc.2010.10.077
11 Calado L M, Taryba M G, Morozov Y, et al. Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy [J]. Corros. Sci., 2020, 170: 108648
doi: 10.1016/j.corsci.2020.108648
12 Morozov Y, Calado L M, Shakoor R A, et al. Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel [J]. Corros. Sci., 2019, 159: 108128
doi: 10.1016/j.corsci.2019.108128
13 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicron-sheet zinc phosphate synthesised by sol–gel method on anticorrosion of epoxy coating [J]. Prog. Org. Coat., 2018, 117: 102
14 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2020, 18: 100403
15 Lu Y, Feng H X, Zhang X F. An overview on study of phytic acid conversion coatings on metal surface [J]. Mater. Rep., 2019, 33: 1455
卢 勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展 [J]. 材料导报, 2019, 33: 1455
16 Zeng J Y, Guo X W, Peng L M, et al. Research progress of phytic acid chemical conversion coatings on magnesium alloy [J]. Mater. Prot., 2019, 52(12): 124
曾纪勇, 郭兴伍, 彭立明 等. 镁合金植酸化学转化膜研究进展 [J]. 材料保护, 2019, 52(12): 124
17 Wang Q, Shi W Z, Li X G. Corrosion inhibition of 16 Mn steel by phytic acid salt [J]. Mater. Prot., 2007, 40(2): 20
王 强, 时维振, 李晓光. 植酸盐对16锰钢缓蚀性能影响的研究 [J]. 材料保护, 2007, 40(2): 20
18 Wang R X. Effect of phytate on the protection performance of epoxy coating with rust [D]. Harbin: Harbin Engineering University, 2018
王荣祥. 植酸盐对环氧带锈涂装涂层防护性能影响的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2018
19 Chen X Y, Tao Y Y, Peng S S, et al. Corrosion inhibition of zinc phytate nanoparticles and protective performance of the composite epoxy coating [J]. Surf. Technol., 2022, 51(5): 32
陈星云, 陶烨寅, 彭叔森 等. 纳米植酸锌缓蚀效果及其复合环氧涂层的防护性能 [J]. 表面技术, 2022, 51(5): 32
20 Yan S P, He W, Sun C Y, et al. The biomimetic synthesis of zinc phosphate nanoparticles [J]. Dyes Pigm., 2009, 80: 254
doi: 10.1016/j.dyepig.2008.06.010
21 Zhou X M, Du H J, Ma H, et al. Facile Preparation and characterization of zinc phosphate with self-assembled flower-like micro-nanostructures [J]. J. Phys. Chem. Solids, 2015, 78: 1
doi: 10.1016/j.jpcs.2014.10.020
22 Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study [J]. Mater. Lett., 2006, 60: 2110
doi: 10.1016/j.matlet.2005.12.082
23 Wan L F, Wang F, Guo Y H, et al. Inhibition of iron surface with Na-salt of phytic acid self-assembled monolayers from corrosion: observed by electrochemistry [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2011, 40: 500
万琉方, 王 芳, 郭玉辉 等. 铁表面植酸钠自组装层缓蚀性能的电化学研究 [J]. 上海师范大学学报(自然科学版), 2011, 40: 500
24 Guo Y M, Li Q J, Yu Y, et al. Applications of electrochemical impedance spectroscopy in undergraduate experimental teaching [J]. Phys. Exp. Coll., 2016, 29(4): 4
郭友敏, 李秋菊, 于 一 等. 电化学阻抗谱在本科实验教学中的应用 [J]. 大学物理实验, 2016, 29(4): 4
25 Cao C N. Principles of Corrosion electrochemistry (3rd Edition) [M]. Beijing: Chemical Industry Press, 2008
曹楚南. 腐蚀电化学原理(第三版) [M]. 北京: 化学工业出版社,2008
26 Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
[1] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] ZHANG Zhaoyi, ZHOU Xuejie, CHEN Hao, WU Jun, CHEN Zhibiao, CHEN Zhijian. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] SUN Jiayu, PENG Wenshan, XING Shaohua. Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[7] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[8] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] DING Yuzhi, CAO Jinxin, CAO Fengting, LI Tao, TAO Jiantao, WANG Tiegang, GAO Guangyao, FAN Qixiang. Research Progress of Risk-based Inspection Technology in Petrochemical Industry[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[10] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[11] WEI Gaofei, DENG Shuduan, SHAO Dandan, XU Juan, LI Xianghong. Inhibition Action of Machilus yunnanensis Leaves Extract on Corrosion of Al-plate in HCl Medium[J]. 中国腐蚀与防护学报, 2024, 44(3): 601-611.
[12] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[13] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[14] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[15] DENG Shuangjiu, LI Chang, YU Menghui, HAN Xing. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
No Suggested Reading articles found!