|
|
Effect of Different Phytates on Corrosion Behaviors of Carbon Steel |
ZHOU Long1, LU Jun1, DING Wenshan1, LI Hao1, TAO Tao1, SHI Chao1( ), SHAO Yawei2, LIU Guangming1 |
1. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China 2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China |
|
Cite this article:
ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 669-678.
|
Abstract The study on the preparation and properties of new anti-rust pigments is of significance for the development of anticorrosion coatings. In this paper, phytates were prepared by reaction of sulfates with sodium phytate. The phytates were characterized using SEM, EDS, FT-IR, and XRD analysis. The results showed that the prepared phytates were amorphous containing obvious phosphate groups, and presented as spherical particles with a diameter of 300-400 nm. The solubilities of phytates in aqueous solution were analyzed through titration test. The corrosion behavior of Q235 steel in phytate-extracting solutions, which were acquired by soaking aluminum-, magnesium-, calcium-, manganese- and zinc-phytates, respectively, in 3.5%NaCl solution and then leaching, were studied via immersion test, Tafel polarization, and electrochemical impedance spectroscopy. The findings revealed that the corrosion rate of carbon steel increased in aluminum phytate-extracting solution due to the production of aluminum-acid (Al(OH)3). However, the corrosion rates decreased in the other four extracting solutions. Notably, the inhibition rate of zinc phytate was approximately 92.46%.
|
Received: 27 July 2023
32134.14.1005.4537.2023.232
|
|
Fund: National Natural Science Foundation of China(52001155);Natural Science Foundation of Jiangxi Province(20212BAB214038);Doctoral Scientific Research Foundation(EA201901056) |
Corresponding Authors:
SHI Chao, E-mail: shichao@nchu.edu.cn
|
1 |
Li N, Ge J, Wang Y S. Research progress of coating preservatives [J]. Henan Build. Mater., 2018, (6): 107
|
|
李 娜, 葛 晶, 王杨松. 涂料防腐剂的研究进展 [J]. 河南建材, 2018, (6): 107
|
2 |
Peng X. Research on electrochemical corrosion behaviors and parameters of rusted carbon steel in marine environment [D]. Qingdao: Ocean University of China, 2013
|
|
彭 欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究 [D]. 青岛: 中国海洋大学, 2013
|
3 |
Jin L B, Liang X Y, Wang Z, et al. Research progress of carbon steel corrosion in seawater full immersion zone [J]. Corros. Prot., 2020, 41(10): 33
|
|
金立兵, 梁新亚, 王 珍 等. 碳钢在海水全浸区腐蚀的研究进展 [J]. 腐蚀与防护, 2020, 41(10): 33
|
4 |
Funke W. Problems and progress in organic coatings science and technology [J]. Prog. Org. Coat., 1997, 31: 5
doi: 10.1016/S0300-9440(97)00013-1
|
5 |
Deyá C, Blustein G, del Amo B, et al. Evaluation of eco-friendly anticorrosive pigments for paints in service conditions [J]. Prog. Org. Coat., 2010, 69: 1
doi: 10.1016/j.porgcoat.2010.03.011
|
6 |
Li K C, Zhuo M Q, Yi F Y, et al. Technological innovation trend of phosphate antirust ppigments [J]. Technol. Dev. Chem. Ind., 2021, 50(7): 46
|
|
李开成, 卓民权, 易芬远 等. 磷酸盐防锈颜料技术发展态势研究 [J]. 化工技术与开发, 2021, 50(7): 46
|
7 |
Naderi R, Mahdavian M, Darvish A. Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment [J]. Prog. Org. Coat., 2013, 76: 302
doi: 10.1016/j.porgcoat.2012.09.026
|
8 |
Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments [J]. Prog. Org. Coat., 2014, 77: 160
|
9 |
Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
|
|
师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
|
10 |
Yang L H, Li J Q, Lin C G, et al. Study of molybdenum/lanthanum-based composite conversion coatings on AZ31 magnesium alloy [J]. Appl. Surf. Sci., 2011, 257: 2838
doi: 10.1016/j.apsusc.2010.10.077
|
11 |
Calado L M, Taryba M G, Morozov Y, et al. Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy [J]. Corros. Sci., 2020, 170: 108648
doi: 10.1016/j.corsci.2020.108648
|
12 |
Morozov Y, Calado L M, Shakoor R A, et al. Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel [J]. Corros. Sci., 2019, 159: 108128
doi: 10.1016/j.corsci.2019.108128
|
13 |
Shi C, Shao Y W, Wang Y Q, et al. Influence of submicron-sheet zinc phosphate synthesised by sol–gel method on anticorrosion of epoxy coating [J]. Prog. Org. Coat., 2018, 117: 102
|
14 |
Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2020, 18: 100403
|
15 |
Lu Y, Feng H X, Zhang X F. An overview on study of phytic acid conversion coatings on metal surface [J]. Mater. Rep., 2019, 33: 1455
|
|
卢 勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展 [J]. 材料导报, 2019, 33: 1455
|
16 |
Zeng J Y, Guo X W, Peng L M, et al. Research progress of phytic acid chemical conversion coatings on magnesium alloy [J]. Mater. Prot., 2019, 52(12): 124
|
|
曾纪勇, 郭兴伍, 彭立明 等. 镁合金植酸化学转化膜研究进展 [J]. 材料保护, 2019, 52(12): 124
|
17 |
Wang Q, Shi W Z, Li X G. Corrosion inhibition of 16 Mn steel by phytic acid salt [J]. Mater. Prot., 2007, 40(2): 20
|
|
王 强, 时维振, 李晓光. 植酸盐对16锰钢缓蚀性能影响的研究 [J]. 材料保护, 2007, 40(2): 20
|
18 |
Wang R X. Effect of phytate on the protection performance of epoxy coating with rust [D]. Harbin: Harbin Engineering University, 2018
|
|
王荣祥. 植酸盐对环氧带锈涂装涂层防护性能影响的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2018
|
19 |
Chen X Y, Tao Y Y, Peng S S, et al. Corrosion inhibition of zinc phytate nanoparticles and protective performance of the composite epoxy coating [J]. Surf. Technol., 2022, 51(5): 32
|
|
陈星云, 陶烨寅, 彭叔森 等. 纳米植酸锌缓蚀效果及其复合环氧涂层的防护性能 [J]. 表面技术, 2022, 51(5): 32
|
20 |
Yan S P, He W, Sun C Y, et al. The biomimetic synthesis of zinc phosphate nanoparticles [J]. Dyes Pigm., 2009, 80: 254
doi: 10.1016/j.dyepig.2008.06.010
|
21 |
Zhou X M, Du H J, Ma H, et al. Facile Preparation and characterization of zinc phosphate with self-assembled flower-like micro-nanostructures [J]. J. Phys. Chem. Solids, 2015, 78: 1
doi: 10.1016/j.jpcs.2014.10.020
|
22 |
Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study [J]. Mater. Lett., 2006, 60: 2110
doi: 10.1016/j.matlet.2005.12.082
|
23 |
Wan L F, Wang F, Guo Y H, et al. Inhibition of iron surface with Na-salt of phytic acid self-assembled monolayers from corrosion: observed by electrochemistry [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2011, 40: 500
|
|
万琉方, 王 芳, 郭玉辉 等. 铁表面植酸钠自组装层缓蚀性能的电化学研究 [J]. 上海师范大学学报(自然科学版), 2011, 40: 500
|
24 |
Guo Y M, Li Q J, Yu Y, et al. Applications of electrochemical impedance spectroscopy in undergraduate experimental teaching [J]. Phys. Exp. Coll., 2016, 29(4): 4
|
|
郭友敏, 李秋菊, 于 一 等. 电化学阻抗谱在本科实验教学中的应用 [J]. 大学物理实验, 2016, 29(4): 4
|
25 |
Cao C N. Principles of Corrosion electrochemistry (3rd Edition) [M]. Beijing: Chemical Industry Press, 2008
|
|
曹楚南. 腐蚀电化学原理(第三版) [M]. 北京: 化学工业出版社,2008
|
26 |
Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|