Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 647-654    DOI: 10.11902/1005.4537.2021.157
Current Issue | Archive | Adv Search |
SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam
LIU Yutong1, CHEN Zhenyu1, ZHU Zhongliang1, FENG Rui2, BAO Hansheng3, ZHANG Naiqiang1()
1.Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Beijing 102206, China
2.Nuclear Power Division, China Huaneng Group Co. Ltd., Beijing 100031, China
3.Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081, China
Download:  HTML  PDF(11488KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress corrosion cracking (SCC) susceptibility of a new type of 2.25Cr1Mo steel and its weld joints was studied by means of slow strain rate tensile (SSRT) tests at a constant strain rate of 1×10-6/s in air and steam at 0.1 MPa/500 ℃ respectively, in order to evaluate its suitability for heat exchanging pipes. The morphology of fracture surface, gage surface and cross-section were analyzed by scanning electron microscopy (SEM). The element composition of oxide scales was determined by energy spectrum analysis (EDS). Experimental results showed that the tensile strength and elongation at break of weld joints were lower than that of base metal in steam at 500 ℃, whilst the elongation at break of which in high temperature steam was higher than that in air. All specimens exhibited features of simple ductile fracture and low SCC susceptibility, cracking occurred only in the oxide scale which was near the fracture, without extending to the matrix. In addition, cracking did not occur near the fusion boundary after SSRT. In conclusion, welding had little effect on SCC susceptibility.

Key words:  2.25Cr1Mo steel      stress corrosion cracking      high temperature water      weld joint     
Received:  06 July 2021     
ZTFLH:  TM623  
Fund: National Natural Science Foundation of China(52071140);Fundamental Research Funds for the Central Universities(2020MS007)
Corresponding Authors:  ZHANG Naiqiang     E-mail:  zhnq@ncepu.edu.cn
About author:  ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn

Cite this article: 

LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 647-654.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.157     OR     https://www.jcscp.org/EN/Y2022/V42/I4/647

MaterialCrCSiMnPSNiVNbMoFe
Test steel2.370.130.0770.470.0020.00040.0300.009<0.011.00Bal.
Weld metal2.20~2.500.07~0.120.15~0.50≤0.90≤0.01≤0.005---≤0.04≤0.030.90~1.20Bal.
Table 1  Chemical compositions of the test steel and weld metal (mass fraction / %)
Fig.1  Schematic drawings of sampling location (a) and the geometry and dimensions (mm) of the specimen (b)
Fig.2  Stress-strain curves of the test steel and its weld joints
SpecimenEnvironmentTensile strength / MPaElonga-tion / %Fracture time / hReduction in area / %
Test steel-1Air421.2027.7477.1993.41
Test steel-2Steam417.4033.4195.6592.16
Z124-1Air305.1923.6468.0991.49
Z124-2Steam286.6632.2489.5691.15
Z125-1Air295.0125.3672.9290.19
Z125-2Steam291.5229.0180.6988.95
Table 2  Summary of SSRT test parameters and mechanical properties at 500 ℃/0.1 MPa
Fig.3  SEM images of the fracture surfaces of the test steel and its weld joints in steam environment: (a) test steel-2, (b) Z124-2, (c) Z125-2, (d) center and (e) edge regions for Z124-2
Fig.4  Photograph of the weld joint specimen Z124-2 before and after SSRT test (a) and high magnifi-cation view of the cracked region (b)
Fig.5  SEM surface images of various samples in the gage sections: (a) test steel-1, (b) test steel-2, (c) Z124-1, (d) Z124-2, (e) Z125-1, (f) Z125-2
Fig.6  Cross-sectional morphology of Z124-2 after SSRT (near the fracture) (a), EDS line scannings along marked black line (b) and elemental mappings of Fe (c1), Cr (c2), O (c3), Mo (c4)
Fig.7  Cross-sectional morphology of Z124-2 after SSRT (near the fusion boundary) (a) and EDS elemental line scannings along marked black line (b, c)
Fig.8  Tensile strength,SCC susceptibility (a) and reduction (b) of test steel and its weld joints
1 Pan X X. Development of steam generator main materials for fast reactor [J]. World Nonf. Met., 2017, (9): 181
潘相相. 钠冷快堆蒸汽发生器主材研究进展 [J]. 世界有色金属, 2017, (9): 181
2 Zhang Z, Hu Z F, Zhang L F, et al. Effect of temperature and dissolved oxygen on stress corrosion cracking behavior of P92 ferritic-martensitic steel in supercritical water environment [J]. J. Nucl. Mater., 2018, 498: 89
doi: 10.1016/j.jnucmat.2017.10.024
3 Liu T G, Xia S, Shoji T. Intergranular stress corrosion cracking in simulated BWR water of 316L stainless steels manufactured with different procedures [J]. Corros. Sci., 2021, 183: 109344
doi: 10.1016/j.corsci.2021.109344
4 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
5 Laha K, Rao K B S, Mannan S L. Creep behaviour of post-weld heat-treated 2.25Cr-1Mo ferritic steel base, weld metal and weldments [J]. Mat. Sci. Eng., 1990, 129A: 183
6 Raman R K S, Gnanamoorthy J B. The oxidation behaviour of the weld metal, heat affected zone and base metal in the weldments of 2.25Cr-1Mo steel [J]. Corros. Sci., 1993, 34: 1275
doi: 10.1016/0010-938X(93)90087-W
7 Cang Y, Huang Y H, Weng S, et al. Effect of environmental variables on galvanic corrosion performance of welded joint of nuclear steam turbine rotor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 318
苍雨, 黄毓晖, 翁硕 等. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 318
8 Ma C, Peng Q J, Han E-H, et al. Review of stress corrosion cracking of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37
马成, 彭群家, 韩恩厚 等. 核电结构材料应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2014, 34: 37
9 Chung W C, Huang J Y, Tsay L W, et al. Stress corrosion cracking in the heat-affected zone of A508 steel welds under high-temperature water [J]. J. Nucl. Mater., 2011, 408: 125
doi: 10.1016/j.jnucmat.2010.10.052
10 Hou J, Peng Q J, Takeda Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint [J]. Corros. Sci., 2010, 52: 3949
doi: 10.1016/j.corsci.2010.08.002
11 Peng Q J, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an Alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water [J]. Corros. Sci., 2011, 53: 4309
doi: 10.1016/j.corsci.2011.08.046
12 Dong L J, Ma C, Peng Q J, et al. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment [J]. J. Mater. Sci. Technol., 2020, 40: 1
doi: 10.1016/j.jmst.2019.08.035
13 Dong L J, Peng Q J, Xue H, et al. Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment [J]. Corros. Sci., 2018, 132: 9
doi: 10.1016/j.corsci.2017.12.011
14 Zhu R L, Wang J Q, Zhang Z M, et al. Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water [J]. Corros. Sci., 2017, 120: 219
doi: 10.1016/j.corsci.2017.01.024
15 Ming H L, Zhu R L, Zhang Z M, et al. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW [J]. Mater. Sci. Eng., 2016, 669A: 279
16 Dong L J, Zhang X L, Han Y L, et al. Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment [J]. Corros. Sci., 2020, 166: 108465
doi: 10.1016/j.corsci.2020.108465
17 Dong L J, Peng Q J, Han E-H, et al. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34: 1281
doi: 10.1016/j.jmst.2017.11.051
18 Khan H I, Zhang N Q, Zhu Z L, et al. Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water [J]. Mater. Corros., 2019, 70: 48
19 Yang L. Influence of welding line energy on mechanical performance of WEL-TEN80A steel's welding joint [J]. Hot Working Technol., 2005, (3): 46
杨莉. 焊接线能量对WEL-TEN80A钢焊接接头力学性能的影响 [J]. 热加工工艺, 2005, (3): 46
20 Yang Y L, Zhu Z P. Effect of SMAW heat input on properties of Q345R steel welded joint [J]. Energy Res. Manage., 2016, (3): 94
杨彦龙, 朱志平. 手工电弧焊线能量对Q345R焊接接头性能的影响 [J]. 能源研究与管理, 2016, (3): 94
21 Akbari-Garakani M, Mehdizadeh M. Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617 [J]. Mater. Des., 2011, 32: 2695
doi: 10.1016/j.matdes.2011.01.017
22 Ampornrat P, Gupta G, Was G S. Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water [J]. J. Nucl. Mater., 2009, 395: 30
doi: 10.1016/j.jnucmat.2009.09.012
23 Sun H Y, Yang H J, Wang M, et al. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water [J]. J. Nucl. Mater., 2017, 484: 339
doi: 10.1016/j.jnucmat.2016.10.039
24 Miwa Y, Jitsukawa S, Tsukada T. Stress corrosion cracking susceptibility of a reduced-activation martensitic steel F82H [J]. J. Nucl. Mater., 2009, 386-388: 703
doi: 10.1016/j.jnucmat.2008.12.332
25 Maeng W Y, Lee J H, Kim U C. Environmental effects on the stress corrosion cracking susceptibility of 3.5NiCrMoV steels in high temperature water [J]. Corros. Sci., 2005, 47: 1876
doi: 10.1016/j.corsci.2004.09.022
26 Wang J M, Su H Z, Ajmand F, et al. Effects of corrosion potential, dissolved oxygen, and chloride on the stress corrosion cracking susceptibility of a 316NG stainless steel weld joint [J]. Corrosion, 2019, 75: 946
doi: 10.5006/2952
27 Dubey D, Kadali K, Panda S S, et al. Comparative study on the stress corrosion cracking susceptibility of AZ80 and AZ31 magnesium alloys [J]. Mater. Sci. Eng., 2020, 792A: 139793
28 Murkute P, Ramkumar J, Mondal K. Stress corrosion cracking behavior of interstitial free steel via slow strain rate technique [J]. J. Mater. Eng. Perform., 2016, 25: 2878
doi: 10.1007/s11665-016-2148-7
29 Padekar B S, Raman R K S, Raja V S, et al. Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E [J]. Corros. Sci., 2013, 71: 1
doi: 10.1016/j.corsci.2013.01.001
30 Winzer N, Atrens A, Song G, et al. A Critical review of the stress corrosion cracking (SCC) of magnesium alloys [J]. Adv. Eng. Mater., 2005, 7: 659
doi: 10.1002/adem.200500071
31 Guo X L, Chen K, Gao W H, et al. A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water [J]. Corros. Sci., 2017, 127: 157
doi: 10.1016/j.corsci.2017.08.027
32 Kuang W J, Was G S, Miller C, et al. The effect of cold rolling on grain boundary structure and stress corrosion cracking susceptibility of twins in alloy 690 in simulated PWR primary water environment [J]. Corros. Sci., 2018, 130: 126
doi: 10.1016/j.corsci.2017.11.002
33 Ullrich C, Tillmann W, Rademacher H G, et al. Investigation of the stress corrosion cracking behavior on T24 material under the operational conditions in the water wall [J]. Int. J. Pres. Ves. Pip., 2021, 190: 104317
34 Li H Y, Cao Q, Zhu Z L. High temperature oxidation behavior of ferritic steel in supercritical water at 550-700°C [J]. Mater. High Temp., 2019, 36: 111
doi: 10.1080/09603409.2018.1468524
35 Raman R K S, Muddle B C. High temperature oxidation in the context of life assessment and microstructural degradation of weldments of 2.25Cr-1Mo steel [J]. Int. J. Pres. Ves. Pip., 2002, 79: 585
[1] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[2] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[3] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[4] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[5] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[6] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[11] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[13] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[14] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[15] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
No Suggested Reading articles found!