|
|
Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water |
LIU Baoping1,2, ZHANG Zhiming1,3( ), WANG Jianqiu1, HAN En-Hou1, KE Wei1 |
1.Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Institute of Corrosion Science and Technology, Guangzhou 510700, China |
|
|
Abstract In this paper, the test methods, evaluation indexes, influencing factors and initiation mechanism related with the stress corrosion cracking in high temperature and high pressure water for structural materials such as stainless steels and nickel-based alloys commonly used in nuclear power plants are reviewed, and the shortcomings of current research and the future research trends are also pointed out.
|
Received: 10 June 2021
|
|
Fund: National Key Research and Development Program of China(2017YFB0702100) |
Corresponding Authors:
ZHANG Zhiming
E-mail: zmzhang@imr.ac.cn
|
About author: ZHANG Zhiming, E-mail: zmzhang@imr.ac.cn
|
1 |
Berg H P. Corrosion mechanisms and their consequences for nuclear power plants with light water reactors [J]. Reliab. Risk Anal.: Theory Appl., 2009, 2: 57
|
2 |
Liu X, Zhao J C, Wang G G, et al. Failure analysis of pipelines and welding joints in nuclear power plant [J]. Failure Anal. Prev., 2013, 8: 300
|
|
刘肖, 赵建仓, 王淦刚 等. 核电厂管道及焊接接头失效案例综述 [J]. 失效分析与预防, 2013, 8: 300
|
3 |
Was G S, Ashida Y, Andresen P L. Irradiation-assisted stress corrosion cracking [J]. Corros. Rev., 2011, 29: 7
|
4 |
Sun H T, Ling L G, Lv Y H, et al. Stress corrosion problems and safety management of equipment and materials in domestic pressurized water reactor nuclear power plants [J]. Corros. Sci. Prot. Technol., 2016, 28: 283
|
|
孙海涛, 凌礼恭, 吕云鹤 等. 国内压水堆核电站设备材料应力腐蚀问题及安全管理 [J]. 腐蚀科学与防护技术, 2016, 28: 283
|
5 |
Hojná A. Environmentally assisted cracking initiation in high-tem-perature water [J]. Metals, 2021, 11: 199
doi: 10.3390/met11020199
|
6 |
Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corrosion, 2008, 64: 707
doi: 10.5006/1.3278508
|
7 |
Andresen P L. Stress corrosion cracking of current structural materials in commercial nuclear power plants [J]. Corrosion, 2013, 69: 1024
doi: 10.5006/0801
|
8 |
Amzallag C, Vaillant F. Stress corrosion crack propagation rates in reactor vessel head penetrations in alloy 600 [A]. BruemmerS, FordP, WasG. Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [M]. The Minerals, Metals and Materials Society, Newport Beach, 1999: 235
|
9 |
Zhu R L, Wang J Q, Zhang L T, et al. Stress corrosion cracking of 316L HAZ for 316L stainless steel/Inconel 52M dissimilar metal weld joint in simulated primary water [J]. Corros. Sci., 2016, 112: 373
doi: 10.1016/j.corsci.2016.07.031
|
10 |
Zhang L T, Wang J Q. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment [J]. J. Nucl. Mater., 2014, 446: 15
doi: 10.1016/j.jnucmat.2013.11.027
|
11 |
Chen K, Wang J M, Du D H, et al. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water [J]. J. Nucl. Mater., 2018, 503: 13
doi: 10.1016/j.jnucmat.2018.02.032
|
12 |
Du D H, Wang J M, Chen K, et al. Environmentally assisted cracking of forged 316LN stainless steel and its weld in high temperature water [J]. Corros. Sci., 2019, 147: 69
doi: 10.1016/j.corsci.2018.10.032
|
13 |
Chen K, Wang J M, Shen Z, et al. Effect of intergranular carbides on the cracking behavior of cold worked alloy 690 in subcritical and supercritical water [J]. Corros. Sci., 2020, 164: 108313
doi: 10.1016/j.corsci.2019.108313
|
14 |
Zhang L T, Wang J Q. Stress corrosion crack propagation behavior of domestic forged nuclear grade 316L stainless steel in high temperature and high pressure water [J]. Acta Metall. Sin., 2013, 49: 911
doi: 10.3724/SP.J.1037.2013.00171
|
|
张利涛, 王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为 [J]. 金属学报, 2013, 49: 911
doi: 10.3724/SP.J.1037.2013.00171
|
15 |
Zhu R L, Wang J Q, Zhang Z M, et al. Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water [J]. Corros. Sci., 2017, 120: 219
doi: 10.1016/j.corsci.2017.01.024
|
16 |
Guo S, Han E-H, Wang H T, et al. Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant [J]. Acta Metall. Sin., 2017, 53: 455
|
|
郭舒, 韩恩厚, 王海涛 等. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测 [J]. 金属学报, 2017, 53: 455
|
17 |
Zhu R L, Zhang Z M, Wang J Q, et al. Review on SCC crack growth behavior of dissimilar metal welds for nuclear power reactors [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 189
|
|
朱若林, 张志明, 王俭秋 等. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 189
|
18 |
Zhang K Q, Hu S L, Tang Z M, et al. Review on stress corrosion crack propagation behavior of cold worked nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 517
|
|
张克乾, 胡石林, 唐占梅 等. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 517
|
19 |
Zhang K Q, Tang Z M, Hu S L, et al. The research status of SCC crack propagation in structural materials of nuclear reactors [J]. Corros. Prot., 2019, 40: 157
|
|
张克乾, 唐占梅, 胡石林 等. 核电用结构材料SCC裂纹扩展的研究现状 [J]. 腐蚀与防护, 2019, 40: 157
|
20 |
Ma C, Peng Q J, Han E-H, et al. Review of stress corrosion cracking of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37
|
|
马成, 彭群家, 韩恩厚 等. 核电结构材料应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2014, 34: 37
|
21 |
Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
|
|
焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
|
22 |
Dozaki K, Akutagawa D, Nagata N, et al. Effects of dissolved hydrogen content in PWR primary water on PWSCC initiation property [J]. E-J. Adv. Maint., 2010, 2: 65
|
23 |
Moss T, Kuang W J, Was G S. Stress corrosion crack initiation in Alloy 690 in high temperature water [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 16
doi: 10.1016/j.cossms.2018.02.001
|
24 |
Boursier J M, Desjardins D, Vaillant F. The influence of the strain-rate on the stress corrosion cracking of alloy 600 in high temperature primary water [J]. Corros. Sci., 1995, 37: 493
doi: 10.1016/0010-938X(94)00158-3
|
25 |
Richey E, Morton D, Schurman M. SCC initiation testing of nickel-based alloys using in-situ monitored uniaxial tensile specimens [A]. AllenT R, KingP J, NelsonL. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. The Minerals, Metals & Materials Society, 2005: 947
|
26 |
Zhai Z Q, Toloczko M B, Olszta M J, et al. Stress corrosion crack initiation of alloy 600 in PWR primary water [J]. Corros. Sci., 2017, 123: 76
doi: 10.1016/j.corsci.2017.04.013
|
27 |
Toloczko M, Zhai Z Q, Bruemmer S. SCC initiation behavior of alloy 182 in PWR primary water [A]. JacksonJH, ParaventiD, WrightM. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham: Springer, 2019: 137
|
28 |
Pemberton S R, Chatterton M A, Griffiths A S, et al. The effect of surface condition on primary water stress corrosion cracking initiation of alloy 600 [A]. JacksonJ H, ParaventiD, WrightM. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham, 2019: 203
|
29 |
Wu W B. Study of stress corrosion cracking initiation and propagation behavior of two typical nuclear key metal materials [D]. Hefei: University of Science and Technology of China, 2019
|
|
吴文博. 两种典型核电关键金属材料应力腐蚀裂纹萌生与扩展行为研究 [D]. 合肥: 中国科学技术大学, 2019
|
30 |
Arioka K, Staehle R W, Yamada T, et al. Degradation of alloy 690 after relatively short times [J]. Corrosion, 2016, 72: 1252
doi: 10.5006/2107
|
31 |
Kuang W J, Was G S. The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690 [J]. Corros. Sci., 2015, 97: 107
doi: 10.1016/j.corsci.2015.04.020
|
32 |
Zhong X Y, Bali S C, Shoji T. Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment [J]. Corros. Sci., 2017, 115: 106
doi: 10.1016/j.corsci.2016.11.019
|
33 |
Hong S L. Influence of surface condition on primary water stress corrosion cracking initiation of alloy 600 [J]. Corrosion, 2001, 57: 323
doi: 10.5006/1.3290356
|
34 |
Chang L T, Volpe L, Wang Y L, et al. Effect of machining on stress corrosion crack initiation in warm-forged type 304L stainless steel in high temperature water [J]. Acta Mater., 2019, 165: 203
doi: 10.1016/j.actamat.2018.11.046
|
35 |
Chang L T, Burke M G, Scenini F. Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water [J]. Corros. Sci., 2018, 138: 54
doi: 10.1016/j.corsci.2018.04.003
|
36 |
Wang S, Shoji T, Kawaguchi N. Initiation of environmentally assisted cracking in high-temperature water [J]. Corrosion, 2005, 61: 137
doi: 10.5006/1.3278168
|
37 |
Hong S L, Amzallag C, Gelpi A. Modelling of stress corrosion crack initiation on alloy 600 in primary water of PWRs [A]. BruemmerS, FordP, WasG. Proceedings of the Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. The Minerals, Metals and Materials Society, Newport Beach, 1999: 115
|
38 |
Rebak R B, Smialowska Z S. Influence of stress intensity and loading mode on intergranular stress corrosion cracking of alloy 600 in primary waters of pressurized water reactors [J]. Corrosion, 1994, 50: 378
doi: 10.5006/1.3294347
|
39 |
Kuang W J, Was G S, Miller C, et al. The effect of cold rolling on grain boundary structure and stress corrosion cracking susceptibility of twins in alloy 690 in simulated PWR primary water environment [J]. Corros. Sci., 2018, 130: 126
doi: 10.1016/j.corsci.2017.11.002
|
40 |
Moss T, Was G S. Accelerated stress corrosion crack initiation of alloys 600 and 690 in hydrogenated supercritical water [J]. Metall. Mater. Trans., 2017, 48A: 1613
|
41 |
Etien R A, Richey E, Morton D S, et al. SCC initiation testing of alloy 600 in high temperature water [A]. BusbyJ T, IlevbareG, AndresenP L. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham: Springer, 2011: 2407
|
42 |
Maeng W Y, Choi M S, Kim U C. Effect of dissolved oxygen on PWSCC susceptibility of Alloy 600 in high temperature water [J]. J. Mater. Sci., 2004, 39: 655
doi: 10.1023/B:JMSC.0000011524.41986.4c
|
43 |
Tsutsumi K, Couvant T. Evaluation of the susceptibility to SCC initiation of alloy 690 in simulated PWR primary water [A]. BusbyJ T, IlevbareG, AndresenP L. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham: Springer, 2011: 41
|
44 |
Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel [J]. Corros. Sci., 2016, 108: 173
doi: 10.1016/j.corsci.2016.03.008
|
45 |
Santarini G. Comprehensive interpretation of CERTs: a method for the characterization and the prediction of IGSCC [J]. Corrosion, 1989, 45: 369
doi: 10.5006/1.3582031
|
46 |
Isselin J, Kai A, Sakaguchi K, et al. Assessment of the effects of cold work on crack initiation in a light water environment using the small-punch test [J]. Metall. Mater. Trans., 2008, 39A: 1099
|
47 |
Zhang K Q, Tang Z M, Hu S L, et al. Effect of cold work and slow strain rate on 321SS stress corrosion cracking in abnormal conditions of simulated PWR primary environment [J]. Nucl. Mater. Energy, 2019, 20: 100697
|
48 |
Kuniya J, Masaoka I, Sasaki R. Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water [J]. Corrosion, 1988, 44: 21
doi: 10.5006/1.3582020
|
49 |
Arioka K, Miyamoto T, Yamada T, et al. Role of cavity formation in crack initiation of cold-worked carbon steel in high-temperature water [J]. Corrosion, 2013, 69: 487
doi: 10.5006/0821
|
50 |
Zhang H B, Li S J, Hu Y H, et al. Research status of Inconel 690 alloy in steam generator heat transfer tubes abroad [J]. Spec. Steel Technol., 2003, 8(4): 2
|
|
张红斌, 李守军, 胡尧和 等. 国外关于蒸汽发生器传热管用Inconel 690合金研究现状 [J]. 特钢技术, 2003, 8(4): 2
|
51 |
Yang Y Z, Cai Z G, Wang Y D, et al. Effects of thermal treatment on microstructure and properties of 690 alloy heat transfer tubes [J]. Hot Work. Technol., 2017, 46(22): 209
|
|
杨义忠, 蔡志刚, 王永东 等. TT处理对690合金传热管显微组织和性能的影响 [J]. 热加工工艺, 2017, 46(22): 209
|
52 |
Zhang Y Y. Effects of deformation and hot treatment on microstructure and mechanical properties of 690 alloy [D]. Dalian: Dalian University of Technology, 2017
|
|
张雨樾. 变形和热处理对690合金微观组织与力学性能的影响 [D]. 大连: 大连理工大学, 2017
|
53 |
Arioka K. 2014 W. R. Whitney Award Lecture: change in bonding strength at grain boundaries before long-term SCC initiation [J]. Corrosion, 2015, 71: 403
doi: 10.5006/1573
|
54 |
Zhai Z Q, Toloczko M, Kruska K, et al. Grain boundary damage evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water [A]. JacksonJH, ParaventiD, WrightM. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham: Springer, 2019: 457
|
55 |
Yu W W, Meng X M, Jiang J W, et al. Investigation on sensitive to thermal aging for key materials used in primary circuit of nuclear power plants [J]. Nucl. Power Eng. Technol., 2014, 27(3): 22
|
|
余伟炜, 蒙新明, 姜家旺 等. 核电站一回路关键设备材料热老化敏感性分析 [J]. 核电工程与技术, 2014, 27(3): 22
|
56 |
Lin X D, Peng Q J, Han E-H, et al. Review of thermal aging of nuclear grade stainless steels [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 81
|
|
林晓冬, 彭群家, 韩恩厚 等. 核级不锈钢的热老化研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 81
|
57 |
Yoo S C, Choi K J, Kim T, et al. Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy [J]. Corros. Sci., 2016, 111: 39
doi: 10.1016/j.corsci.2016.04.051
|
58 |
Yoo S C, Choi K J, Kim T, et al. Effects of thermal aging and stress triaxiality on PWSCC initiation susceptibility of nickel-based Alloy 600 [J]. J. Mater. Sci. Technol., 2016, 30: 4403
|
59 |
Li S L, Wang Y L, Wang H, et al. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2016, 469: 262
doi: 10.1016/j.jnucmat.2015.11.043
|
60 |
Lai C L, Lu W F, Huang J Y. Effect of δ-ferrite content on the stress corrosion cracking behavior of cast austenitic stainless steel in high-temperature water environment [J]. Corrosion, 2014, 70: 591
doi: 10.5006/1155
|
61 |
Kim H S, Hong J D, Lee J, et al. Effects of hydrogen on the PWSCC initiation behaviours of alloy 182 weld in PWR environments [J]. Corros. Sci. Technol., 2015, 14: 113
doi: 10.14773/cst.2015.14.3.113
|
62 |
Li Y C, Zhu Z P, Yang D W, et al. Hydrochemical Control Conditions in Nuclear Power Plants [M]. Beijing: Chemical Industry Press, 2008
|
|
李宇春, 朱志平, 杨道武 等. 核电站水化学控制工况 [M]. 北京: 化学工业出版社, 2008
|
63 |
Kim Y J, Andresen P L, Moran E, et al. Modification of surface property for controlling the type 304 stainless steel electrochemical corrosion potential in 288℃ water [J]. Corrosion, 2005, 61: 648
doi: 10.5006/1.3278200
|
64 |
Soustelle C, Foucault M, Framatome P C, et al. PWSCC of alloy 600: a parametric study of surface film effects [A]. BruemmerS, FordP, WasG. Proceedings of the Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. The Minerals, Metals and Materials Society, Newport Beach, 1999: 105
|
65 |
Zhong X Y, Bali S C, Shoji T. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 118: 143
doi: 10.1016/j.corsci.2017.02.003
|
66 |
Nakagawa K, Nono M, Kimura A. Effect of dissolved hydrogen on the SCC susceptibility of SUS316L stainless steel [J]. Mater. Sci. Forum, 2010, 654-656: 2887
doi: 10.4028/www.scientific.net/MSF.654-656.2887
|
67 |
Choi K J, Yoo S C, Kim T, et al. Effects of dissolved hydrogen on crack growth rate of warm-rolled 316L austenitic stainless steel in primary water condition [A]. Proceedings of the ASME 2015 Pressure Vessels and Piping Conference [C]. Boston, 2015: 1
|
68 |
Matocha K, Wozniak J. Stress corrosion cracking initiation in austenitic stainless steel in high temperature water [A]. BruemmerS, FordP, WasG. Proceedings of the Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. The Minerals, Metals and Materials Society, Newport Beach, 1999: 383
|
69 |
Kawamura H, Hirano H, Shirai S, et al. Inhibitory effect of zinc addition to high-temperature hydrogenated water on mill-annealed and prefilmed alloy 600 [J]. Corrosion, 2000, 56: 623
doi: 10.5006/1.3280565
|
70 |
Febrianto, Sriyono, Widodo S, et al. The effect of zinc injection on the increasing of Inconel 600 TT corrosion resistances [J]. J. Phys.: Conf. Ser., 2018, 962: 012049
|
71 |
Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52: 375
doi: 10.5006/1.3292125
|
72 |
Andresen P L. Emerging issues and fundamental processes in environmental cracking in hot water [J]. Corrosion, 2008, 64: 439
doi: 10.5006/1.3278483
|
73 |
Macdonald D D, Lu P C, Urquidi-Macdonald M, et al. Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments [J]. Corrosion, 1996, 52: 768
doi: 10.5006/1.3292070
|
74 |
MacDonald D D, Urquidi-MacDonald M. A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments [J]. Corros. Sci., 1991, 32: 51
doi: 10.1016/0010-938X(91)90063-U
|
75 |
Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182 [J]. Corros. Sci., 2013, 67: 91
doi: 10.1016/j.corsci.2012.10.012
|
76 |
Panter J, Viguier B, Cloué J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348: 213
doi: 10.1016/j.jnucmat.2005.10.002
|
77 |
Scott P M. An overview of internal oxidation as a possible explanation of intergranular stress corrosion cracking of alloy 600 in PWRS [A]. BruemmerS, FordP, WasG. Proceedings of the Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. The Minerals, Metals and Materials Society, Newport Beach, 1999: 3
|
78 |
Arioka K, Miyamoto T, Yamad T, et al. Role of cavity formation on crack growth of cold-worked carbon steel, TT 690 and MA 600 in high temperature water [A]. BusbyJ T, IlevbareG, AndresenP L. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham: Springer, 2011: 55
|
79 |
Arioka K, Miyamoto T, Yamada T, et al. Formation of cavities prior to crack initiation and growth on cold-worked carbon steel in high-temperature water [J]. Corrosion, 2010, 66: 015008
|
80 |
Van Bueren H G. Theory of the formation of lattice defects during plastic strain [J]. Acta Metall., 1955, 3: 519
doi: 10.1016/0001-6160(55)90109-7
|
81 |
Kuang W J, Was G S. A high-resolution characterization of the initiation of stress corrosion crack in Alloy 690 in simulated pressurized water reactor primary water [J]. Corros. Sci., 2020, 163: 108243
doi: 10.1016/j.corsci.2019.108243
|
82 |
Volpe L, Burke M G, Scenini F. Correlation between grain boundary migration and stress corrosion cracking of alloy 600 in hydrogenated steam [J]. Acta Metall., 2020, 186: 454
|
83 |
Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on alloy 600 formed in primary water of pressurized water reactors [J]. J. Nucl. Sci. Technol., 2003, 40: 509
doi: 10.1080/18811248.2003.9715385
|
84 |
Ferguson J B, Lopez H F. Oxidation products of INCONEL alloys 600 and 690 in pressurized water reactor environments and their role in intergranular stress corrosion cracking [J]. Metall. Mater. Trans., 2006, 37A: 2471
|
85 |
Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant [J]. Acta Metall. Sin., 2011, 47: 769
|
|
韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究—进展与趋势 [J]. 金属学报, 2011, 47: 769
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|