|
|
Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment |
SUN Baozhuang1, ZHOU Xiaocheng1, LI Xiaorong2, SUN Weilu3, LIU Zirui1, WANG Yuhua4, HU Yang4, LIU Zhiyong1( ) |
1.National Materials Corrosion and Protection Science Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.Tianjin Dagang Oilfield Group Engineering Construction Co. Ltd. , Tianjin 300280, China 3.College of Economics and Management, Tianjin University of Science & Technology, Tianjin 300222, China 4.SINOPEC Qilu Petrochemical Company, Zibo 255434, China |
|
|
Abstract The stress corrosion cracking (SCC) behavior in NH4Cl solutions was studied by means of potentiodynamic polarization measurement, electrochemical impedance spectra (EIS) measurement for 316L stainless steel with microstructures corresponding with different status of the steel, including as-received, solid solution- and sensitization-treatment. The results show that 316L stainless steels exert high SCC susceptibility in NH4Cl containing environment, which increases in the order of as-received, solid solution- and sensitization-treatment. With the rising NH4Cl concentration, the stability of passive film degrades, the passive current density increases, the breakdown potential and polarization resistance decline. In particular, in the saturated NH4Cl solution, pits are prone to initiate, which leads to the occurrence of SCC. In NH4Cl solution, SCC of 316L stainless steel is dominated by anodic dissolution (AD) process, and the SCC cracks propagate transgranularly.
|
Received: 23 September 2020
|
|
Fund: National Key R&D Program of China(2017YFF0210404) |
Corresponding Authors:
LIU Zhiyong
E-mail: liuzhiyong7804@126.com
|
About author: LIU Zhiyong, E-mail: liuzhiyong7804@126.com
|
1 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
|
2 |
Xing X J, Yang M H, Jiang Y J, et al. Summary of high-chlorine crude oil processing [J]. Pet. Ref. Eng., 2015, 45(1): 7
|
|
邢献杰, 杨明辉, 江煜杰等. 高氯原油加工情况总结 [J]. 炼油技术与工程, 2015, 45(1): 7
|
3 |
Zhou M. Current status of corrosion and control in Chinese petroleum refining and chemical enterprises [J]. Corros. Prot., 2012, 33 (suppl.2): 62
|
|
周敏. 中国石油炼化企业腐蚀与控制现状 [J]. 腐蚀与防护, 2012, 33(): 62
|
4 |
Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behaviour of two stainless steels in hydrogen sulfide environment [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 318
|
|
刘智勇, 董超芳, 李晓刚等. 硫化氢环境下两种不锈钢的应力腐蚀开裂行为 [J]. 北京科技大学学报, 2009, 31: 318
|
5 |
Sun J L, Zhou D, Jin J, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665
|
|
孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665
|
6 |
Sun L, Hou Y H, Yang X, et al. Effect of chlorine ion and sulfur ion on corrosion of 316L stainless steel and monel alloy in oil refining process [J]. Surf. Technol., 2015, 44(12): 41
|
|
孙亮, 侯艳宏, 杨席等. 炼油加工过程中氯离子与硫离子对316L不锈钢和Monel合金腐蚀的影响 [J]. 表面技术, 2015, 44(12): 41
|
7 |
Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
|
8 |
Toba K, Ueyama M, Kawano K, et al. Corrosion of carbon steel and alloys in concentrated ammonium chloride solutions [J]. Corrosion, 2012, 68: 1049
|
9 |
Zheng Z J, Ou G F, Ye H J, et al. Analysis on the under deposit corrosion of air cooler tubes: Thermodynamic, numerical and experimental study [J]. Eng. Failure Anal., 2017, 79: 726
|
10 |
Zhao M, Gong S P, Kang Q L, et al. Detection and control of chlorides in crude oil processing [J]. Corros. Prot. Petrochem. Ind., 2014, 31(3): 16
|
|
赵敏, 龚树鹏, 康强利等. 原油加工中氯化物的检测及控制 [J]. 石油化工腐蚀与防护, 2014, 31(3): 16
|
11 |
Cheng C Q, Klinkenberg L I, Ise Y, et al. Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition [J]. Corros. Sci., 2017, 118: 217
|
12 |
Yang X N, Qi H M, Gao J S, et al. Case analysis on corrosion by hydrogenation effluent [J]. Ref. Chem. Ind., 2011, 22(5): 42
|
|
杨秀娜, 齐慧敏, 高景山等. 加氢反应流出物腐蚀案例分析 [J]. 炼油与化工, 2011, 22(5): 42
|
13 |
Qiao G P, Chen W. Ammonium salt corrosion analysis and risk-bask management of hydro-processing reactor effluent system [J]. Corros. Prot., 2012, 33: 618
|
|
乔光谱, 陈炜. 加氢装置反应系统的氨盐腐蚀分析及风险管理 [J]. 腐蚀与防护, 2012, 33: 618
|
14 |
Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
|
15 |
Liu X Y. Ammonium salt corrosion in reactor effluent system of hydrogenation unit and prevention [J]. Corros. Prot. Petrochem. Ind., 2014, 31(2): 17
|
|
刘新阳. 加氢反应流出物中铵盐腐蚀及预防 [J]. 石油化工腐蚀与防护, 2014, 31(2): 17
|
16 |
Shargay C A, Turner J, Messer B, et al. Design considerations to minimize ammonium chloride corrosion in hydrotreater REAC's [A]. Proceedings of the Corrosion 2001 [C]. Houston, Texas, 2001
|
17 |
Sun A D, Fan D Y. Prediction, monitoring, and control of ammonium chloride corrosion in refining processes [A]. Proceedings of the Corrosion 2010 [C]. San Antonio, Texas, 2010
|
18 |
Ma H C, Wu W, Zhou X C, et al. Comparative study on stress corrosion cracking behaviors of 304 and 321 austenitic stainless steels by different heat treatment in NH4Cl solution [J]. Surf. Technol., 2018, 47(11): 126
|
|
马宏驰, 吴伟, 周霄骋等. 不同热处理态的304和321奥氏体不锈钢在氯化铵环境中的应力腐蚀行为对比研究 [J]. 表面技术, 2018, 47(11): 126
|
19 |
Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
|
20 |
Andrade C, Keddam M, Nóvoa X R, et al. Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry [J]. Electrochim. Acta, 2001, 46: 3905
|
21 |
Dı́az B, Joiret S, Keddam M, et al. Passivity of iron in red mud’s water solutions [J]. Electrochim. Acta, 2004, 49: 3039
|
22 |
Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
|
23 |
Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
|
24 |
Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
|
25 |
Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
|
26 |
Truman J E. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel [J]. Corros. Sci., 1977, 17: 737
|
27 |
Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|