Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 811-818    DOI: 10.11902/1005.4537.2020.172
Current Issue | Archive | Adv Search |
Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment
SUN Baozhuang1, ZHOU Xiaocheng1, LI Xiaorong2, SUN Weilu3, LIU Zirui1, WANG Yuhua4, HU Yang4, LIU Zhiyong1()
1.National Materials Corrosion and Protection Science Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Tianjin Dagang Oilfield Group Engineering Construction Co. Ltd. , Tianjin 300280, China
3.College of Economics and Management, Tianjin University of Science & Technology, Tianjin 300222, China
4.SINOPEC Qilu Petrochemical Company, Zibo 255434, China
Download:  HTML  PDF(17087KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress corrosion cracking (SCC) behavior in NH4Cl solutions was studied by means of potentiodynamic polarization measurement, electrochemical impedance spectra (EIS) measurement for 316L stainless steel with microstructures corresponding with different status of the steel, including as-received, solid solution- and sensitization-treatment. The results show that 316L stainless steels exert high SCC susceptibility in NH4Cl containing environment, which increases in the order of as-received, solid solution- and sensitization-treatment. With the rising NH4Cl concentration, the stability of passive film degrades, the passive current density increases, the breakdown potential and polarization resistance decline. In particular, in the saturated NH4Cl solution, pits are prone to initiate, which leads to the occurrence of SCC. In NH4Cl solution, SCC of 316L stainless steel is dominated by anodic dissolution (AD) process, and the SCC cracks propagate transgranularly.

Key words:  316L stainless steel      ammonium chloride environment      heat treatment      stress corrosion cracking     
Received:  23 September 2020     
ZTFLH:  TG172  
Fund: National Key R&D Program of China(2017YFF0210404)
Corresponding Authors:  LIU Zhiyong     E-mail:  liuzhiyong7804@126.com
About author:  LIU Zhiyong, E-mail: liuzhiyong7804@126.com

Cite this article: 

SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 811-818.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.172     OR     https://www.jcscp.org/EN/Y2021/V41/I6/811

Fig.1  Morphologies of 316L stainless steel under different heat treatment processes: (a) as-received microstructure, (b) solid-solution microstructure, (c) sensitized microstructure
Fig.2  Dynamic potential polarization curves of 316L stainless steel under different heat treatment in differentconcentration NH4Cl solutions: (a) as-received microstructure, (b) solid-solution microstructure, (c) sensitized microstructure
Fig.3  Eb (a) and Icorr (b) fitting results of 316L stainless steel under different heat treatment in different concentration NH4Cl solutions
Fig.4  Electrochemical impedance spectroscopy of 316L stainless steel under different heat treatment in different concentration NH4Cl solutions: (a) as-received microstructure, (b) solid-solution microstructure, (c) sensitized microstructure, (d) fitting polarization resistance
Fig.5  Equivalent fitting circuit of electrochemical imped-ance spectroscopy
Fig.6  Microscopic morphologies of 316L stainless steel U-bend specimens immersed in 0.1% (a1~c1), 5% (a2~c2), 10% (a3~c3) and saturated solution (a4~c4) concentrations of boiling NH4Cl solution for 30 d: (a) as-received microstru-cture, (b) solid-solution microstructure, (c) sensitized microstructure
Fig.7  SEM images of cracking propagation (a, b, d) and composition analysis (c) in 316L stainless steel under different heat treatment in saturated NH4Cl boiling solution: (a) as-received microstructure, (b) solid-solution microstructure, (c) sensitized microstructure
Fig.8  SEM images of crack growth along the thickness of 316L stainless steel under different heat treatment in saturated NH4Cl boiling solution: (a) as-received microstructure, (b) solid-solution microstructure, (c) sensitized microstructure
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
2 Xing X J, Yang M H, Jiang Y J, et al. Summary of high-chlorine crude oil processing [J]. Pet. Ref. Eng., 2015, 45(1): 7
邢献杰, 杨明辉, 江煜杰等. 高氯原油加工情况总结 [J]. 炼油技术与工程, 2015, 45(1): 7
3 Zhou M. Current status of corrosion and control in Chinese petroleum refining and chemical enterprises [J]. Corros. Prot., 2012, 33 (suppl.2): 62
周敏. 中国石油炼化企业腐蚀与控制现状 [J]. 腐蚀与防护, 2012, 33(): 62
4 Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behaviour of two stainless steels in hydrogen sulfide environment [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 318
刘智勇, 董超芳, 李晓刚等. 硫化氢环境下两种不锈钢的应力腐蚀开裂行为 [J]. 北京科技大学学报, 2009, 31: 318
5 Sun J L, Zhou D, Jin J, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665
孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665
6 Sun L, Hou Y H, Yang X, et al. Effect of chlorine ion and sulfur ion on corrosion of 316L stainless steel and monel alloy in oil refining process [J]. Surf. Technol., 2015, 44(12): 41
孙亮, 侯艳宏, 杨席等. 炼油加工过程中氯离子与硫离子对316L不锈钢和Monel合金腐蚀的影响 [J]. 表面技术, 2015, 44(12): 41
7 Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
8 Toba K, Ueyama M, Kawano K, et al. Corrosion of carbon steel and alloys in concentrated ammonium chloride solutions [J]. Corrosion, 2012, 68: 1049
9 Zheng Z J, Ou G F, Ye H J, et al. Analysis on the under deposit corrosion of air cooler tubes: Thermodynamic, numerical and experimental study [J]. Eng. Failure Anal., 2017, 79: 726
10 Zhao M, Gong S P, Kang Q L, et al. Detection and control of chlorides in crude oil processing [J]. Corros. Prot. Petrochem. Ind., 2014, 31(3): 16
赵敏, 龚树鹏, 康强利等. 原油加工中氯化物的检测及控制 [J]. 石油化工腐蚀与防护, 2014, 31(3): 16
11 Cheng C Q, Klinkenberg L I, Ise Y, et al. Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition [J]. Corros. Sci., 2017, 118: 217
12 Yang X N, Qi H M, Gao J S, et al. Case analysis on corrosion by hydrogenation effluent [J]. Ref. Chem. Ind., 2011, 22(5): 42
杨秀娜, 齐慧敏, 高景山等. 加氢反应流出物腐蚀案例分析 [J]. 炼油与化工, 2011, 22(5): 42
13 Qiao G P, Chen W. Ammonium salt corrosion analysis and risk-bask management of hydro-processing reactor effluent system [J]. Corros. Prot., 2012, 33: 618
乔光谱, 陈炜. 加氢装置反应系统的氨盐腐蚀分析及风险管理 [J]. 腐蚀与防护, 2012, 33: 618
14 Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
15 Liu X Y. Ammonium salt corrosion in reactor effluent system of hydrogenation unit and prevention [J]. Corros. Prot. Petrochem. Ind., 2014, 31(2): 17
刘新阳. 加氢反应流出物中铵盐腐蚀及预防 [J]. 石油化工腐蚀与防护, 2014, 31(2): 17
16 Shargay C A, Turner J, Messer B, et al. Design considerations to minimize ammonium chloride corrosion in hydrotreater REAC's [A]. Proceedings of the Corrosion 2001 [C]. Houston, Texas, 2001
17 Sun A D, Fan D Y. Prediction, monitoring, and control of ammonium chloride corrosion in refining processes [A]. Proceedings of the Corrosion 2010 [C]. San Antonio, Texas, 2010
18 Ma H C, Wu W, Zhou X C, et al. Comparative study on stress corrosion cracking behaviors of 304 and 321 austenitic stainless steels by different heat treatment in NH4Cl solution [J]. Surf. Technol., 2018, 47(11): 126
马宏驰, 吴伟, 周霄骋等. 不同热处理态的304和321奥氏体不锈钢在氯化铵环境中的应力腐蚀行为对比研究 [J]. 表面技术, 2018, 47(11): 126
19 Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
20 Andrade C, Keddam M, Nóvoa X R, et al. Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry [J]. Electrochim. Acta, 2001, 46: 3905
21 Dı́az B, Joiret S, Keddam M, et al. Passivity of iron in red mud’s water solutions [J]. Electrochim. Acta, 2004, 49: 3039
22 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
23 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
24 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
25 Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
26 Truman J E. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel [J]. Corros. Sci., 1977, 17: 737
27 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
[1] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[2] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[3] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[4] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[5] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[6] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[11] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[14] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[15] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
No Suggested Reading articles found!