Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1094-1100    DOI: 10.11902/1005.4537.2023.132
Current Issue | Archive | Adv Search |
Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress
LI Jiayuan1,2, ZENG Tianhao1,2, LIU Youtong1,2, WU Xiaochun1,2()
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.State Key Laboratory of Metallurgy and Preparation of High Quality Special Steel, Shanghai University, Shanghai 200444, China
Download:  HTML  PDF(19880KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance of 4Cr16Mo martensite stainless steels without and with 1%Cu addition (i.e., 4Cr16MoCu) in 3.5%NaCl solution was comparatively studied by three-point flexural loading stress corrosion test method. The results show that there is no significant difference in corrosion resistance between the two steels after tempering at 250 ℃. However, after tempering at 600 ℃, the corrosion resistance of 4Cr16MoCu steel is significantly enhanced. Through microstructure analysis, it is speculated that this is related to the precipitation of the Cu-rich phase. A stress corrosion model for the 4Cr16MoCu steel is proposed based on the characteristics and evolution process of corrosion morphology of the steel, i.e., in the early stage of corrosion, breaks of the passivation film may induce the emerging discrete anode- and cathode-spots on the steel surface, further result in an electrolytic polishing-like effect to peel off the surface passivation film and finally the pitting corrosion.

Key words:  martensite stainless steel      Cu-rich phase      stress corrosion      quasi-electrolytic polishing ion effect     
Received:  04 May 2023      32134.14.1005.4537.2023.132
ZTFLH:  TG171  
Fund: National Key R & D Program(2016YFB0300400)
Corresponding Authors:  WU Xiaochun, E-mail: xcwu@staff.shu.edu.cn   

Cite this article: 

LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1094-1100.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.132     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1094

MaterialCCrMoSiMnCuNiFe
4Cr16Mo0.3715.321.100.720.51-0.16Bal.
4Cr16MoCu0.3115.941.080.460.601.070.88Bal.
Table 1  Composition of two experimental steel
Fig.1  Three-point bending stress corrosion experimental diagram: (a) device schematic diagram, (b) schematic diagram of sample sealing position
Fig.2  Corrosion morphology of samples under stress of 100 MPa: (a) 4Cr16MoCu tempered at 250 ℃, (b) 4Cr16Mo tempered at 250 ℃, (c) 4Cr16MoCu tempered at 600 ℃, (d) 4Cr16Mo tempered at 600 ℃
Fig.3  Raman spectroscopy analysis of corrosion products under 250 ℃ tempering temperature: (a) 4Cr16MoCu, (b) 4Cr16Mo
Fig.4  Local corrosion morphology of 4Cr16MoCu-250 ℃ tempered sample: (a) after 24 h, (b) after 168 h, (c) surface morphology after removing corrosion products, (d) surface morphology on 3D profilometer after removing corrosion products
Fig.5  STEM image and surface scanning results of 4Cr16MoCu tempered at 600 ℃: (a) STEM image of Cu-rich precipitation, (b) mapping result of Cu 1, (c) mapping result of Cr 1
Fig.6  Corrosion circle formation model
Fig.7  Corrosion morphology of 4Cr16Mo material: (a) corrosion surface morphology, (b) surface morphology after removing corrosion products, (c) SEM images of the same corrosion area, (d) surface morphology under white light interferometer
1 Park T W, Kang C Y. The effects of PWHT on the toughness of weld HAZ in Cu-containing HSLA-100 steel [J]. ISIJ Int., 2000, 40: S49
doi: 10.2355/isijinternational.40.Suppl_S49
2 Lee J S, Kim S T, Lee I S, et al. Effect of copper addition on the active corrosion behavior of hyper duplex stainless steels in sulfuric acid [J]. Mater. Trans., 2012, 53: 1048
doi: 10.2320/matertrans.M2012008
3 Liu X H, Liu L L, Sui F L, et al. Influence of Cu on the microstructure and corrosion resistance of cold-rolled type 204 stainless steels [J]. J. Solid State Electrochem., 2020, 24: 1197
doi: 10.1007/s10008-020-04614-1
4 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
doi: 10.11902/1005.4537.2020.242
5 Li B B, Qu H P, Lang Y P, et al. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels [J]. Corros. Sci., 2020, 173: 108791
doi: 10.1016/j.corsci.2020.108791
6 Li Y Q, Du Q M, Cheng H M. Effect of alloy elements on corrosion behavior of low alloy steel used for oil tanker [J]. J. Iron Steel Res. Int., 2017, 29: 506
李玉谦, 杜琦铭, 成慧梅. 合金元素对油船用低合金钢腐蚀行为的影响 [J]. 钢铁研究学报, 2017, 29: 506
7 Wang H M, Huang F, Yuan W, et al. Corrosion behavior of a novel Cu-Mo weathering steel in an artificial marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 507
汪涵敏, 黄 峰, 袁 玮 等. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 507
doi: 10.11902/1005.4537.2022.170
8 Oguzie E E, Li J B, Liu Y Q, et al. The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels [J]. Electrochim. Acta, 2010, 55: 5028
doi: 10.1016/j.electacta.2010.04.015
9 He J B. Effect of Cu-rich nanophase on microstructure, mechanics and corrosion property of steel [D]. Wuhan: Wuhan University of Science and Technology, 2019
贺吉白. 富铜纳米相对钢的组织、力学及腐蚀性能的影响 [D]. 武汉: 武汉科技大学, 2019
10 Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
doi: 10.1016/j.corsci.2018.04.032
11 Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
12 Jiang J. Effect of aging treatment on corrosion resistance of Cu-bearing stainless steels [D]. Nanjing: Nanjing University of Science & Technology, 2017
江 杰. 时效处理对含铜不锈钢耐蚀性能的影响 [D]. 南京: 南京理工大学, 2017
13 Ren L, Nan L, Yang K. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel [J]. Mater. Des., 2011, 32: 2374
doi: 10.1016/j.matdes.2010.11.030
14 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
[1] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[2] LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[3] LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[4] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[5] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[6] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[7] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[8] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[9] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[10] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[11] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[12] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[13] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[14] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[15] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
No Suggested Reading articles found!