Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1087-1093    DOI: 10.11902/1005.4537.2022.321
Current Issue | Archive | Adv Search |
Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel
GAO Qiuying1,2, ZENG Wenguang1,2, WANG Heng1, LIU Yuancong3, HU Junying3()
1.Petroleum Engineering Technology Research Institute of Sinopec Northwest Oilfield Company, Urumqi 830011, China
2.Key Labortory for EOR of Fracture Vuggy Reservoir of Sinopec, Urumqi 830011, China
3.School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
Download:  HTML  PDF(6818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Erosion corrosion and sulfate reducing bacteria (SRB) induced corrosion bring harm to the safe operation of pipeline. In this article, the SRB induced corrosion of pipeline steel L360 in fluid scouring environment was studied comparatively by means of numerical simulation and simulation experiments. The predicted cloud map and particle motion trajectory map of the distribution for corrosion areas of pipeline steel were obtained by using computational fluid dynamics (CFD) simulation. Results showed that the most serious corrosion located at the bottom of the pipeline, the corrosion degree at the outlet of the pipeline was higher than that at the entrance of the pipeline. Electrochemical methods and surface analysis methods were used to characterize the SRB induced corrosion in solid-liquid two-phase flowing environment. Results show that when the biofilm of SRB did not exist on the metal surface (i.e., no biofilm of SRB has been formed on the steel through a pre-treatment), the scouring corrosion is dominant, the metal surface shows obvious scouring corrosion characteristics, and the corrosion products are mainly iron oxides. When SRB has formed a dense biofilm on the metal surface (after a proper pre-treatment), SRB corrosion dominates, and the biofilm will inhibit the scouring corrosion, but the life activity of SRB under the film will induce the electron exchange with the metal matrix, so that SRB induced corrosion occurs, and the corrosion products consist mainly of sulfur and iron compounds.

Key words:  erosion corrosion      sulfate reducing bacteria      CFD simulation      electrochemical analysis     
Received:  19 October 2022      32134.14.1005.4537.2022.321
ZTFLH:  TE257  
Fund: Key Project Topics of Sinopec(319016-5)
Corresponding Authors:  HU Junying, E-mail: hujunying01@yeah.net   

Cite this article: 

GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1087-1093.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.321     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1087

Fig.1  Particle traces and corrosion area at different inlet velocities: (a) 0.6 m/s, (b) 1 m/s, (c) 1.5 m/s, (d) 2 m/s
Fig.2  OCP of samples at different test time
Fig.3  EIS of samples at different test time without (a) and with (b) SRB pre-film, and equivalent circuit (c)
Samplet / hRf / Ω·cm2Qf / 10-3 F·cm2n
Without SRB pre-film0455.303.6180.900
2453.603.7060.905
4694.204.3970.541
6448.203.6750.900
8391.805.0770.837
With SRB pre-film01214.006.4350.906
21113.006.5410.912
41192.006.6960.908
61193.006.7270.911
81064.007.6450.907
Table 1  Fitting parameters of EIS of samples
Fig.4  Potentiodynamic polarization curves of samples
Fig.5  Surface corrosion morphology (a, b) and EDS result (c) of sample without pre-film treatment
Fig.6  Surface corrosion morphology (a, b) and EDS result (c) of sample with pre-film treatment
t / hCt1 / cell·mL-1Ct2 / cell·mL-1Ct3 / cell·mL-1
0250000025000002500000
260000025000002600000
230000025000002400000
12220000022000002500000
24220000021000002100000
Scour 0 h240000022000002200000
Scour 8 h220000022000002100000
Table 2  Number of SRB at different test time
Fig.7  Number of SRB tested by extinction dilution method: (a) scour 0 h, (b) scour 8 h
1 Xu Y Z, Liu L, Zhou Q P, et al. Understanding the influences of pre-corrosion on the erosion-corrosion performance of pipeline steel [J]. Wear, 2020, 442/443: 203151
2 Meng H, Hu X, Neville A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design [J]. Wear, 2007, 263: 355
doi: 10.1016/j.wear.2006.12.007
3 Zeng L, Shuang S, Guo X P, et al. Erosion-corrosion of stainless steel at different locations of a 90° elbow [J]. Corros. Sci., 2016, 111: 72
doi: 10.1016/j.corsci.2016.05.004
4 Tang X, Xu L Y, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: Synergism of erosion and corrosion [J]. Corros. Sci., 2008, 50: 1469
doi: 10.1016/j.corsci.2008.01.019
5 Zeng L, Zhang G A, Guo X P. Erosion-corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
doi: 10.1016/j.corsci.2014.04.045
6 Elemuren R, Evitts R, Oguocha O, et al. Slurry erosion-corrosion of 90° AISI 1018 steel elbow in saturated potash brine containing abrasive silica particles [J]. Wear, 2018, 410/411: 149
7 Wang W Z, Hu J Y, Zhong X K. Research progress of the erosion-corrosion in oil and gas production and transmission process [J]. Mater. Prot., 2021, 54(9): 123
王伟志, 扈俊颖, 钟显康. 油气生产与输送过程中冲刷腐蚀的研究进展 [J]. 材料保护, 2021, 54(9): 123
8 Alley B, Beebe A, Rodgers Jr J, et al. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources [J]. Chemosphere, 2011, 85: 74
doi: 10.1016/j.chemosphere.2011.05.043 pmid: 21680012
9 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
10 Ferris F G, Jack T R, Bramhill B J. Corrosion products associated with attached bacteria at an oil field water injection plant [J]. Can. J. Microbiol., 1992, 38: 1320
doi: 10.1139/m92-217
11 Luo J H, Xu C M, Yang D P. Stress corrosion cracking of X100 pipeline steel in acid soil medium with SRB [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 321
罗金恒, 胥聪敏, 杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为 [J]. 中国腐蚀与防护学报, 2016, 36: 321
doi: 10.11902/1005.4537.2015.177
12 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
13 Daly R A, Borton M A, Wilkins M J, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales [J]. Nat. Microbiol., 2016, 1: 16146
doi: 10.1038/nmicrobiol.2016.146 pmid: 27595198
14 Cliffe L, Nixon S L, Daly R A, et al. Identification of persistent sulfidogenic bacteria in shale gas produced waters [J]. Front. Microbiol., 2020, 11: 286
doi: 10.3389/fmicb.2020.00286 pmid: 32153553
15 Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
舒 韵, 闫茂成, 魏英华 等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408
16 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
17 Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795
18 Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
19 Sedrez T A, Shirazi S A, Rajkumar Y R, et al. Experiments and CFD simulations of erosion of a 90° elbow in liquid-dominated liquid-solid and dispersed-bubble-solid flows [J]. Wear, 2019, 426/427: 570
20 Stack M M, Abdelrahman S M, Jana B D. A new methodology for modelling erosion-corrosion regimes on real surfaces: Gliding down the galvanic series for a range of metal-corrosion systems [J]. Wear, 2010, 268: 533
doi: 10.1016/j.wear.2009.09.013
21 Li M, Zhu L Z, Lin D H. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components [J]. Environ. Sci. Technol., 2011, 45: 1977
doi: 10.1021/es102624t
22 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
23 Peng X Y, Liu X Y. Modification of D-W model for corrosion rate of shale gas pipeline under the synergistic corrosion of SRB and CO2 [J]. Anti-Corros. Methods Mater., 2021, 68: 150
doi: 10.1108/ACMM-10-2020-2397
[1] YANG Xinyu, LI Zhen, DUAN Tigang, HUANG Guosheng, MA Li, LIU Feng, JIANG Dan. Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[2] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[3] REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] Aiguo JIANG,Jianwen ZHANG,Yanan XIN,Xiaoming CONG,Shi DONG. Numerical Simulation of Multiphase Erosion-corrosion of Tubes Bundles of Hydrocracking Air Cooler[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[6] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[7] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[8] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[9] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[10] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[11] LIU Guiqun, ZHENG Yugui, JIANG Shengli, JING Junhang, DONG Weijuan, ZENG Hong, SI Pinxian. Stability and Erosion Corrosion Behavior of Corrosion Product Film of Q235 Carbon Steel and Cr5Mo Low Alloy Steel in Simulated Oil Refinery Media[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
[12] ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[13] ZHOU Tingting, YUAN Chengqing, CAO Pan, WANG Xuejun, DONG Conglin. Numerical Simulation Analysis of Fluid Erosion Corrosion of Injection Nozzle for Diesel Engine[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[14] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[15] LIU Wenhong, LI Lei, LIU Yonggang, PAN Zhiyong, WANG Jianjun. MECHANISM OF EROSION-CORROSION WASHOUT FAILURE IN INTERNAL UPSET TRANSITION ZONE FOR DRILLPIPE BASED ON APPLICATION OF FLOW FIELD ANALYSIS[J]. 中国腐蚀与防护学报, 2011, 31(2): 160-164.
No Suggested Reading articles found!