Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 988-994    DOI: 10.11902/1005.4537.2022.123
Current Issue | Archive | Adv Search |
Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water
XU Ping(), ZHAO Meihui, BAI Pengkai
National Demonstration Center for Experimental Water Environment Education, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Cite this article: 

XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 988-994.

Download:  HTML  PDF(2080KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of hydroxyethylidene diphosphonic acid (HEDP) on the corrosion behavior and biofilm properties of iron bacteria (IB) on carbon steel surface in the circulating cooling water system was investigated by means of corrosion mass loss method, electrochemical technology, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), confocal laser microscope (CLSM) and biochemical technology. The results showed that in the presence of HEDP, the iron bacteria induced corrosion rate of carbon steel reduced by 68.72%, correspondingly the corrosion current density decreased by 56.93%, the corrosion potential shifted positively, and the increase in the slope of the cathode in the polarization curve was much higher than that of the anode. The cathodic reaction inhibited the corrosion of iron bacteria; at the same time, under the action of HEDP, iron bacteria increased by 0.3~1.0 orders of magnitude, the secretion amount of extracellular polymeric substance (EPS) increased by 23.91%, and the biofilm structure was IB-EPS-IB, which reflected that the presence of HEDP was able to stimulate the growth of iron bacteria and the secretion of EPS, resulting in the formation of a thin and compact biofilm. This study can provide support for the in-depth study of corrosion theory and control methods in circulating cooling water systems.

Key words:  HEDP      iron bacteria      microbial corrosion      carbon steel      circulating cooling water     
Received:  22 April 2022     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51578035)
About author:  XU Ping, E-mail: xuping@bucea.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.123     OR     https://www.jcscp.org/EN/Y2022/V42/I6/988

Fig.1  Average corrosion rate of carbon steel
Fig.2  Polarization curves of the carbon steel electrode after 7 d
ConditionEcorr / VIcorr / μA·cm-2βa / mV·dec-1βc / mV·dec-1
Control-0.7913.81864246
IB-0.8314.495104220
HEDP+IB-0.771.936113447
Table 1  Fitting parameters obtained from 7 d internal polarization curves
Fig.3  Nyquist curves of carbon steel electrode after 7 d
Fig.4  Equivalent circuits simulating the experimental impedance data: (a) IB, (b) HEDP+IB
ConditionRs / Ω·cm2Qb / F·cm-2nbRb / Ω·cm2Qf / F·cm-2nfRct / Ω·cm2
Control308.6---------1.8×10-40.81904586
IB258.65.1×10-40.747222374.7×10-30.80222857
HEDP+IB257.43.1×10-40.940532138.6×10-50.98876751
Table 2  Fitting results of various AC impedance parameters of the carbon steel electrode corroded for 7 d
Fig.5  SEM images of corrosion products of carbon steel in IB condition (a) and HEDP+IB condition (b)
Fig.6  Fitting results of corrosion products on carbon steel surface in IB condition (a), HEDP+IB condition (b)
Condition123456789Average
Control31.5632.6135.6444.2043.2344.8553.7851.7452.4043.33
HEDP15.2517.4218.1619.3721.4521.8824.0325.1425.0120.86
Table 3  Adhesion strength between carbon steel and dip coated HEDP (nN)
Fig.7  Amounts of iron bacteria as a function of time
Fig.8  Variation in EPS, PS, PN contents of biofilm
Fig.9  Schematic diagram of the influence mechanism of HEDP on the corrosion of iron bacteria: (a) initial adsorption stage, (b) stable stage
[1] Liu Z F, Wang Y J, Gao Y H, et al. Synergistic scale inhibition of polyaspartic acid composite with magnetic field [J]. Petroche. Technol., 2006, 35: 891
(刘振法, 王延吉, 高玉华 等. 聚天冬氨酸复配物与磁场的协同阻垢效应 [J]. 石油化工, 2006, 35: 891)
[2] Cui C W, Li S F, Yang H, et al. Study of corrosion inhibitors PBTCA、HEDP and ATMP [J]. Mater. Sci. Eng., 2006, 14: 608
(崔崇威, 李绍峰, 杨红 等. PBTCA、HEDP、ATMP缓蚀性能的理论研究 [J]. 材料科学与工艺, 2006, 14: 608)
[3] Salasi M, Shahrabi T, Roayaei E. Effect of inhibitor concentration and hydrodynamic conditions on the inhibitive behaviour of combinations of sodium silicate and HEDP for corrosion control in carbon steel water transmission pipes [J]. Anti-Corros. Methods Mater., 2007, 54: 82
doi: 10.1108/00035590710733575
[4] Li X Q. Study on performance of organic polyphosphonate and polycarboxylate composite corrosion inhibitor [J]. Shandong Chem. Ind., 2021, 50(7): 42
(李新强. 有机聚膦酸盐和聚羧酸盐复合缓蚀剂性能研究 [J]. 山东化工, 2021, 50(7): 42)
[5] Wang Y T, Chen H L, Zhang Z J, et al. Synthesis and characterization of PBTCA-modified hyperbranched polyether corrosion and scale inhibitors [J]. J. Appl. Polym. Sci., 2019, 136: 48041
doi: 10.1002/app.48041
[6] Farooqi I H, Hussain A, Saini P A, et al. Study of low cost eco-friendly compounds as corrosion inhibitors for cooling systems [J]. Anti-Corros. Methods Mater., 1999, 46: 328
doi: 10.1108/00035599910295508
[7] Rajendran S, Apparao B V, Palaniswamy N. HEDP-Zn2+: a potential inhibitor system for mild steel in low chloride media [J]. Anti-Corros. Methods Mater., 2000, 47: 83
doi: 10.1108/00035590010316430
[8] Wang J, Wang D, Hou D Y. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system [J]. J. Environ. Sci., 2016, 39: 13
doi: 10.1016/j.jes.2015.10.007
[9] Ai S Y. Study and development on organophosphonate corrosion and scale inhibitor [J]. Chem. Cleaning, 1997, 13: 29
(艾仕云. 有机膦酸盐缓蚀阻垢剂的研究和发展 [J]. 化学清洗, 1997, 13: 29)
[10] Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system [J]. Front. Environ. Sci. Eng., 2017, 11: 14
[11] Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
(王坤泰, 陈馥, 李环 等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248)
[12] Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
(李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 211)
[13] Teimouri A, Soltani N, Chermahini A N. Synthesis of mono and bis-4-methylpiperidiniummethyl-urea as corrosion inhibitors for steel in acidic media [J]. Front. Chem. Sci. Eng., 2011, 5: 43
doi: 10.1007/s11705-010-0532-7
[14] Awad H S, Turgoose S. Role of complexes in inhibition of mild steel by zinc-1-hydroxyethylidene-1, 1-diphosphonic acid mixtures [J]. Br. Corros. J., 2002, 37: 147
doi: 10.1179/000705902225004347
[15] Awad H S, Turgoose S. Inhibition by zinc and 1-hydroxyethane-1,1-diphosphonic acid of the corrosion of mild steel [J]. Corrosion, 2002, 58: 505
doi: 10.5006/1.3277641
[16] Abrahami S T, De Kok J M M, Terryn H, et al. Towards Cr (VI) -free anodization of aluminum alloys for aerospace adhesive bonding applications: A review [J]. Front. Chem. Sci. Eng., 2017, 11: 465
doi: 10.1007/s11705-017-1641-3
[17] Nasrazadani S, Raman A. Formation and transformation of magnetite (Fe3O4) on steel surfaces under continuous and cyclic water fog testing [J]. Corrosion, 1993, 49: 294
doi: 10.5006/1.3316052
[18] Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism [J]. Nature, 1987, 330: 252
doi: 10.1038/330252a0
[19] Golden D C, Dixon J B. Silicate and phosphate influence on kaolin-iron oxide interactions [J]. Soil Sci. Soc. Am. J., 1985, 49: 1568
doi: 10.2136/sssaj1985.03615995004900060047x
[20] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
[21] Roden E E, Zachara J M. Microbial reduction of crystalline Iron(III) oxides: influence of oxide surface area and potential for cell growth [J]. Environ. Sci. Technol., 1996, 30: 1618
doi: 10.1021/es9506216
[22] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
(崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403)
[23] Lv M Y, Li Z X, Du M, et al. Effect of culture medium on microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 757
(吕美英, 李振欣, 杜敏 等. 培养基对微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 757)
[24] Zhao W, Xia M Z, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 26
(赵维, 夏明珠, 雷武 等. 有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究 [J]. 中国腐蚀与防护学报, 2002, 22: 26)
[1] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[2] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[3] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[4] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[5] LUO Weiping, LUO Xue, SHI Yueting, WANG Xinchao, ZHANG Shengtao, GAO Fang, LI Hongru. Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[6] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[7] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[8] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[9] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[10] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[11] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[12] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[13] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[14] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[15] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
No Suggested Reading articles found!