Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 995-1001    DOI: 10.11902/1005.4537.2021.264
Current Issue | Archive | Adv Search |
Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃
REN Yanjie1, LV Yunlei1, DAI Ting1, GUO Xiaohui2, CHEN Jian1, ZHOU Libo1, QIU Wei1, NIU Yan1()
1. Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
2. School of Materials & Engineering, University of Science & Technology of China, Shenyang 110016, China
Cite this article: 

REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 995-1001.

Download:  HTML  PDF(8613KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of two ternary alloys Co-20Ni-xAl (x=3, 5, mass fraction, %) was studied in 105 Pa O2 at 800-1000 ℃ for 20 h. After oxidation, the two alloys all formed double-layered external scales composed of an outer layer of CoO (with a small amount of NiO) and an inner layer of mixtures CoO and spinels, usually followed by a region of internal oxidation of Al. The oxidation rate of the alloys increases with the increasing temperature. When the increase of Al content from 3% to 5%, the oxidation rate of Co-Ni-Al alloys is reduced, however, the Al content of 5% is not yet sufficient to ensure the formation of a protective external alumina scale on the alloy. In fact, the experimental results may be well interpreted by the prediction according to the theoretical mode related to the reaction of binary alloy with single oxidant by simplifying the ternary Co-Ni-Al alloys as binary (Co-Ni)-Al alloys.

Key words:  Co-Ni-Al alloy      high temperature oxidation      oxidation kinetics      protective scale     
Received:  29 September 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51771034);National Natural Science Foundation of China(52171066);Natural Science Foundation of Hunan Province(2020JJ4610);Graduate Scientific Research Innovation Project of Hunan Province(CX20200871);Graduate Scientific Research Innovation Project of CSUST(CX2020SS66)
About author:  NIU Yan, E-mail: yniu@csust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.264     OR     https://www.jcscp.org/EN/Y2022/V42/I6/995

Nominal mass fraction / %Nominal atomic fraction / %Actual mass fraction / %
Co-20Ni-3AlCo-19.39Ni-6.47AlCo-20.0Ni-3.06Al
Co-20Ni-5AlCo-19.24Ni-10.22AlCo-20.3Ni-4.96Al
Table 1  Nominal and ICP-OES determined compositions of Co-20Ni-3Al and Co-20Ni-5Al alloys
Fig.1  Isothermal ternary phase diagrams of Co-Ni-Al at 800 ℃ (a), 900 ℃ (b) and 1000 ℃ (c) and metallographic structures of Co-20Ni-3Al (d) and Co-20Ni-5Al (e)
Fig.2  Oxidation kinetics of Co-20Ni-3Al and Co-20Ni-5Al alloys in 105 Pa O2 for 20 h at 800 (a, b), 900 (c, d) and 1000 ℃ (e, f), (a, c, e) mass gain vs time, (b, d, f) mass gain vs time1/2
Temperature / ℃AlloyParabolic stages
800Co-20Ni-3Al2.18×10-10 (0.25-12.5 h)4.92×10-10 (12.5-20 h)
Co-20Ni-5Al1.57×10-10 (0.25-20 h)
900Co-20Ni-3Al4.28×10-9 (0.25-3 h)4.03×10-8 (3-20 h)
Co-20Ni-5Al1.97×10-9 (0.25-20 h)
1000Co-20Ni-3Al3.85×10-7 (0.6-4.5 h)1.77×10-8 (4.5-20 h)
Co-20Ni-5Al1.31×10-8 (0-20 h)
Table 2  Fitting parabolic rate constants of the oxidation kinetics of Co-20Ni-3Al and Co-20Ni-5Al alloys in 105 Pa O2 at 800, 900 and 1000 ℃ for 20 h (g2·cm-4·s-1)
Fig.3  Oxidation kinetic of Co-20Ni-3Al (a) and Co-20Ni-5Al (b) in 105 Pa O2 for 20 h at 800, 900 and 1000 ℃
Fig.4  Cross sections of Co-20Ni-3Al (a-c) and Co-20Ni-5Al (d-f) alloys oxidized in 105 Pa O2 for 20 h at 800 (a, d), 900 (b, e) and 1000 ℃ (c, f)
AlloyOxidation zone800 ℃900 ℃1000 ℃
Co-20Ni-3AlEOZ47.72383.4795.56-1010
IOZ5.6810.9856.78
Co-20Ni-5AlEOZ24.6479.14263.72
IOZ20.880.4528.79-95.23
Table 3  Thicknesses of oxidation zones of Co-20Ni-3Al and Co-20Ni-5Al alloys in 105 Pa O2 at 800, 900 and 1000 ℃ for 20 h (μm)
[1] Yuan F H, Sun X F, Guan H R, et al. Cyclic oxidation behavior of a Cobalt-base superalloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 115
(袁福河, 孙晓峰, 管恒荣 等. 钴基高温合金的循环氧化行为研究 [J]. 中国腐蚀与防护学报, 2002, 22: 115)
[2] Singh P, Birks N. The attack of Co-Cr alloys by Ar-SO2 atmospheres [J]. Oxid. Met., 1979, 13: 457
doi: 10.1007/BF00605110
[3] Irving G N, Stringer J, Whittle D P. Effect of the possible fcc stabilizers Mn, Fe, and Ni on the high-temperature oxidation of Co-Cr alloys [J]. Oxid. Met., 1974, 8: 393
doi: 10.1007/BF00603389
[4] Biegun T, Brückman A, Mrowec S. High-temperature sulfide corrosion of cobalt-chromium alloys [J]. Oxid. Met., 1978, 12: 157
doi: 10.1007/BF00740257
[5] Przybylski K, Szwagierczak D. Kinetics and mechanism of high-temperature oxidation of dilute cobalt-chromium alloys [J]. Oxid. Met., 1982, 17: 267
doi: 10.1007/BF00738387
[6] Fryt E M, Wood G C, Stott F H, et al. Influence of prior internal oxidation on the oxidation of dilute Co-Cr alloys in oxygen [J]. Oxid. Met., 1985, 23: 77
doi: 10.1007/BF01095808
[7] Wang L, Xiang J H, Zhang H H, et al. High temperature oxidation behavior of three Co-20Re-xCr alloys in 3.04 ×10-5 Pa oxygen at 1000 and 1100 ℃ [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 83
(王玲, 向军淮, 张洪华 等. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为 [J]. 中国腐蚀与防护学报, 2019, 39: 83)
[8] Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
[9] Yu H, Ukai S, Hayashi S, et al. Effect of Al content on the high-temperature oxidation of Co-20Cr-(5, 10)Al oxide dispersion strengthened superalloys [J]. Corros. Sci., 2017, 118: 49
doi: 10.1016/j.corsci.2017.01.015
[10] Wallwork G R, Hed A Z. Mapping of the oxidation products in the ternary Co-Cr-Al system [J]. Oxid. Met., 1971, 3: 213
doi: 10.1007/BF00603522
[11] Gao B, Wang L, Liu Y, et al. Corrosion behavior of new type co-based superalloys with different Ni contents [J]. Corros. Rev., 2017, 35: 455
doi: 10.1515/corrrev-2017-0003
[12] Weiser M, Galetz M C, Chater R J, et al. Growth mechanisms of oxide scales on two-phase Co/Ni-base model alloys between 800 ℃ and 900 ℃ [J]. J. Electrochem. Soc., 2020, 167: 021504
[13] Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ′-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
[14] Preece A, Lucas G. The high-temperature oxidation of some cobalt-base and nickel-base alloys [J]. J. Inst. Met., 1952, 81: 219
[15] Wood G C, Wright I G, Ferguson J M. The oxidation of Ni and Co and of Ni/Co alloys at high temperatures [J]. Corros. Sci., 1965, 5: 645
doi: 10.1016/S0010-938X(65)90203-9
[16] Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
doi: 10.1016/0001-6160(61)90103-1
[17] Liu L L. High temperature corrosion in oxidizing and/or sulfidizing atmospheres of Fe-xSi alloys and effect of Cr addition with grain refinement [D]. Shenyang: Institute of Metal Research Chinese Academy of Sciences, 2014
(刘兰兰. Fe-xSi合金的高温氧化、氧化-硫化腐蚀及第三组织元和微晶化的影响[D]. 沈阳: 中国科学院金属研究所, 2014)
[18] Wu W T, Yan R Y, Niu Y, et al. The oxidation of a Co-15wt%Y alloy under low oxygen pressures at 600-800 ℃ [J]. Corros. Sci., 1997, 39: 1831
doi: 10.1016/S0010-938X(97)00057-7
[19] Green A, Swindells N. Measurement of interdiffusion coefficients in Co-Al and Ni-Al systems between 1000 and 1200 ℃ [J]. Mater. Sci. Technol., 2013, 1: 101
doi: 10.1179/mst.1985.1.2.101
[1] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[2] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[3] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[4] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[5] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[6] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[7] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[9] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[10] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[11] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[12] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[14] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[15] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
No Suggested Reading articles found!