Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 127-134    DOI: 10.11902/1005.4537.2022.001
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater
LIU Jinzeng1,2, XING Shaohua1(), QIAN Yao1,2, ZHANG Dalei2, MA Li1
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Download:  HTML  PDF(9719KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion of the couples of 20# steel penetrating cabin parts and tin bronze valve is the severely corroded parts in the sea water pipeline system of ships. In order to control the galvanic corrosion of the couple 20# steel/tin bronze to extend the life of the seawater pipeline system, the galvanic potential and galvanic current of the couple 20# steel pipe/tin bronze pipe in static and flowing sea water of 1, 3, and 5 m/s were assessed in-situ, respectively. Whilst, the variations of galvanic corrosion rate with time and flow rate were acquired; At the same time, scanning electron microscope (SEM) and laser Raman spectrometer were used to analyze the corrosion morphology and the composition of corrosion products. The results show that there is an obvious galvanic corrosion tendency between 20# steel and ZCuSn5Pb5Zn5 in seawater of different flow rates, namely 20# steel acts as the anode, and presents intensified corrosion tendency, while ZCuSn5Pb5Zn5 acts as the cathode. The anodic polarization current density of 20# steel and the cathodic polarization current density of ZCuSn5Pb5Zn5 increase significantly in flowing seawater rather than in static seawater, therewith the galvanic corrosion is significantly intensified. The galvanic couple in flowing seawater of 1 m/s presents a corrosion rate 17.5 times higher than that in static seawater. When the seawater flow rate reaches 5 m/s, a corrosion product scale with higher compactness and low activity is formed on the surface of 20# steel, and the galvanic corrosion rate decreases.

Key words:  galvanic corrosion      flowing sea water      20# steel      tin bronze      in-situ measurement     
Received:  01 January 2022      32134.14.1005.4537.2022.001
ZTFLH:  TG174  

Cite this article: 

LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 127-134.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.001     OR     https://www.jcscp.org/EN/Y2023/V43/I1/127

Fig.1  Schematic diagrams of pipeline scouring device (a) and electrolytic cell device (b)
Fig.2  Average corrosion potentials of 20# steel and ZCuSn5Pb5Zn5 alloy in seawater with different flow rates
Fig.3  Variations of galvanic potential and galvanic current of 20# steel/ZCuSn5Pb5Zn5 alloy couple with corrosion time
Fig.4  Galvanic potentials (a) and galvanic current densities (b) of 20# steel/ZCuSn5Pb5Zn alloy couple in seaw-ater with different flow rates
Fig.5  Variation curves of galvanic current density and galvanic potential of the couple with the flow rate of seawater
Fig.6  Corrosion morphologies of coupled 20# steel after scouring in seawater with the flow rates of 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d)
Fig.7  3D morphologies of coupled 20# steel after corrosion in seawater with 1 m/s (a), 3 m/s (b) and 5 m/s (c) flow rates and then removing the surface corrosion products by pickling
Fig.8  Micromorphologies of anodic 20# steel after corrosion in seawater with the flow rates of 1 m/s (a), 3 m/s (b) and 5 m/s (c)
Fig.9  Raman spectroscopies of surface corrosion products of 20# steel after corrosion in seawater with the flow rates of 1 m/s (a),3 m/s (b) and 5 m/s (c)
Fig.10  Micromorphologies of 20# steel after corrosion in seawater with 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d) flow rates and then removing the corrosion products by pickling
Fig.11  Polarization curves of two test materials in seawater with different flow rates
Fig.12  Mechanism diagrams of galvanic corrosion of 20# steel/ZCuSn5Pb5Zn5 couple in seawater
1 Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16
周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16
2 Yang S W, Xi H Z, Xie F Z, et al. Study of naval vessel galvanic corrosion [J]. J. Harbin Eng. Univ., 2000, 21(6): 34
杨世伟, 席慧智, 谢辅洲 等. 舰船材料的电偶腐蚀研究 [J]. 哈尔滨工程大学学报, 2000, 21(6): 34
3 Wang H B, Fang Z G. Control of galvanic corrosion of dissimilar metals of seawater pipelines in naval vessels [J]. Corros. Sci. Prot. Technol., 2007, 19: 145
王虹斌, 方志刚. 舰船海水管系异金属电偶腐蚀的控制 [J]. 腐蚀科学与防护技术, 2007, 19: 145
4 Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46
5 Zhu X R, Huang G Q, Lin L Y, et al. Research progress on the long period corrosion law of metallic materials in seawater [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 142
朱相荣, 黄桂桥, 林乐耘 等. 金属材料长周期海水腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2005, 25: 142
6 Wang P, Pang K, Zhang H F, et al. Analysis of corrosion failure of bronze cut-off valve in marine seawater pipe system [J]. Mater. Prot., 2018, 51(10): 143
王培, 逄昆, 张海峰 等. 船舶海水管路青铜截止阀腐蚀失效分析 [J]. 材料保护, 2018, 51(10): 143
7 Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd ed. Beijing: Chemical Industry Press, 2004
曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004
8 Glover T J. Copper-nickel alloy for the construction of ship and boat hulls [J]. Br. Corros. J., 1982, 17: 155
doi: 10.1179/000705982798274228
9 Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263
10 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416
11 Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
陈兴伟, 吴建华, 王佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363
12 Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
13 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on Erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
朱娟, 张乔斌, 陈宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
14 Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol. Mater. Surf. Interfaces, 2007, 1: 33
doi: 10.1179/175158407X181471
15 Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 399
李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
16 Zhu X R, Dai M A, Chen Z J, et al. Corrosion behaviour of metallic materials in high velocity seawater [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 173
朱相荣, 戴明安, 陈振进 等. 高流速海水中金属材料的腐蚀行为 [J]. 中国腐蚀与防护学报, 1992, 12: 173
17 Dai M A, Zhang Y, Yin Z A, et al. Kinetic law of galvanic corrosion in flowing seawater [J]. Corros. Sci. Prot. Technol., 1992, 4: 209
戴明安, 张英, 殷正安 等. 流动海水中电偶腐蚀动力学规律 [J]. 腐蚀科学与防护技术, 1992, 4: 209
18 Sun B K, Li N, Du M. Galvanic Corrosion behavior of B10/H62 couple in Seawater of different flowing rate [J]. Mater. Prot., 2011, 44(7): 20
孙保库, 李宁, 杜敏. 不同流速海水中B10/H62电偶腐蚀规律 [J]. 材料保护, 2011, 44(7): 20
19 Wang J, Cheng C Q, Wang D Y, et al. Effect of flowing rate on galvanic corrosion associated with 316L/2205 and 431/2205 stainless steel couples in 3.5%NaCl solution [J]. Corros. Prot., 2015, 36: 442
王健, 程从前, 王冬颖 等. 流动对316L/2205和431/2205不锈钢在3.5%NaCl溶液中电偶腐蚀的影响 [J]. 腐蚀与防护, 2015, 36: 442
20 Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al Alloy/Q235 Mild Steel/304 Stainless Steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
21 Wu X Y, Sun J K, Wang J M, et al. Investigation on galvanic corrosion behaviors of CFRPs and Aluminum Alloys systems for automotive applications [J]. Mater. Corros., 2019, 70: 1036
22 El-Dahshan M E, El Din A M S, Haggag H H. Galvanic corrosion in the systems Titanium/316 L Stainless Steel/Al Brass in Arabian gulf water [J]. Desalination, 2002, 142: 161
doi: 10.1016/S0011-9164(01)00435-0
23 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
白苗苗, 白子恒, 蒋立 等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
24 Liu J. Study on the deterioration processes of organic coating/low alloy steel systems in simulated deep-sea environment [D]. Qingdao: Ocean University of China, 2011
刘杰. 模拟深海环境下有机涂层/低合金钢体系失效过程的研究 [D]. 青岛: 中国海洋大学, 2011
25 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
26 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 Steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
27 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[3] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[5] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[6] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[7] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[8] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[9] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[10] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[11] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[12] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[13] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[14] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[15] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
No Suggested Reading articles found!