|
|
Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater |
LIU Jinzeng1,2, XING Shaohua1( ), QIAN Yao1,2, ZHANG Dalei2, MA Li1 |
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China 2.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China |
|
|
Abstract The galvanic corrosion of the couples of 20# steel penetrating cabin parts and tin bronze valve is the severely corroded parts in the sea water pipeline system of ships. In order to control the galvanic corrosion of the couple 20# steel/tin bronze to extend the life of the seawater pipeline system, the galvanic potential and galvanic current of the couple 20# steel pipe/tin bronze pipe in static and flowing sea water of 1, 3, and 5 m/s were assessed in-situ, respectively. Whilst, the variations of galvanic corrosion rate with time and flow rate were acquired; At the same time, scanning electron microscope (SEM) and laser Raman spectrometer were used to analyze the corrosion morphology and the composition of corrosion products. The results show that there is an obvious galvanic corrosion tendency between 20# steel and ZCuSn5Pb5Zn5 in seawater of different flow rates, namely 20# steel acts as the anode, and presents intensified corrosion tendency, while ZCuSn5Pb5Zn5 acts as the cathode. The anodic polarization current density of 20# steel and the cathodic polarization current density of ZCuSn5Pb5Zn5 increase significantly in flowing seawater rather than in static seawater, therewith the galvanic corrosion is significantly intensified. The galvanic couple in flowing seawater of 1 m/s presents a corrosion rate 17.5 times higher than that in static seawater. When the seawater flow rate reaches 5 m/s, a corrosion product scale with higher compactness and low activity is formed on the surface of 20# steel, and the galvanic corrosion rate decreases.
|
Received: 01 January 2022
32134.14.1005.4537.2022.001
|
|
1 |
Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16
|
|
周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16
|
2 |
Yang S W, Xi H Z, Xie F Z, et al. Study of naval vessel galvanic corrosion [J]. J. Harbin Eng. Univ., 2000, 21(6): 34
|
|
杨世伟, 席慧智, 谢辅洲 等. 舰船材料的电偶腐蚀研究 [J]. 哈尔滨工程大学学报, 2000, 21(6): 34
|
3 |
Wang H B, Fang Z G. Control of galvanic corrosion of dissimilar metals of seawater pipelines in naval vessels [J]. Corros. Sci. Prot. Technol., 2007, 19: 145
|
|
王虹斌, 方志刚. 舰船海水管系异金属电偶腐蚀的控制 [J]. 腐蚀科学与防护技术, 2007, 19: 145
|
4 |
Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
|
|
黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46
|
5 |
Zhu X R, Huang G Q, Lin L Y, et al. Research progress on the long period corrosion law of metallic materials in seawater [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 142
|
|
朱相荣, 黄桂桥, 林乐耘 等. 金属材料长周期海水腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2005, 25: 142
|
6 |
Wang P, Pang K, Zhang H F, et al. Analysis of corrosion failure of bronze cut-off valve in marine seawater pipe system [J]. Mater. Prot., 2018, 51(10): 143
|
|
王培, 逄昆, 张海峰 等. 船舶海水管路青铜截止阀腐蚀失效分析 [J]. 材料保护, 2018, 51(10): 143
|
7 |
Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd ed. Beijing: Chemical Industry Press, 2004
|
|
曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004
|
8 |
Glover T J. Copper-nickel alloy for the construction of ship and boat hulls [J]. Br. Corros. J., 1982, 17: 155
doi: 10.1179/000705982798274228
|
9 |
Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
|
|
杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263
|
10 |
Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
|
|
王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416
|
11 |
Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
|
|
陈兴伟, 吴建华, 王佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363
|
12 |
Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
|
13 |
Zhu J, Zhang Q B, Chen Y, et al. Progress of study on Erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
|
|
朱娟, 张乔斌, 陈宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
|
14 |
Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol. Mater. Surf. Interfaces, 2007, 1: 33
doi: 10.1179/175158407X181471
|
15 |
Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 399
|
|
李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
|
16 |
Zhu X R, Dai M A, Chen Z J, et al. Corrosion behaviour of metallic materials in high velocity seawater [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 173
|
|
朱相荣, 戴明安, 陈振进 等. 高流速海水中金属材料的腐蚀行为 [J]. 中国腐蚀与防护学报, 1992, 12: 173
|
17 |
Dai M A, Zhang Y, Yin Z A, et al. Kinetic law of galvanic corrosion in flowing seawater [J]. Corros. Sci. Prot. Technol., 1992, 4: 209
|
|
戴明安, 张英, 殷正安 等. 流动海水中电偶腐蚀动力学规律 [J]. 腐蚀科学与防护技术, 1992, 4: 209
|
18 |
Sun B K, Li N, Du M. Galvanic Corrosion behavior of B10/H62 couple in Seawater of different flowing rate [J]. Mater. Prot., 2011, 44(7): 20
|
|
孙保库, 李宁, 杜敏. 不同流速海水中B10/H62电偶腐蚀规律 [J]. 材料保护, 2011, 44(7): 20
|
19 |
Wang J, Cheng C Q, Wang D Y, et al. Effect of flowing rate on galvanic corrosion associated with 316L/2205 and 431/2205 stainless steel couples in 3.5%NaCl solution [J]. Corros. Prot., 2015, 36: 442
|
|
王健, 程从前, 王冬颖 等. 流动对316L/2205和431/2205不锈钢在3.5%NaCl溶液中电偶腐蚀的影响 [J]. 腐蚀与防护, 2015, 36: 442
|
20 |
Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al Alloy/Q235 Mild Steel/304 Stainless Steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
|
21 |
Wu X Y, Sun J K, Wang J M, et al. Investigation on galvanic corrosion behaviors of CFRPs and Aluminum Alloys systems for automotive applications [J]. Mater. Corros., 2019, 70: 1036
|
22 |
El-Dahshan M E, El Din A M S, Haggag H H. Galvanic corrosion in the systems Titanium/316 L Stainless Steel/Al Brass in Arabian gulf water [J]. Desalination, 2002, 142: 161
doi: 10.1016/S0011-9164(01)00435-0
|
23 |
Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
|
|
白苗苗, 白子恒, 蒋立 等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
|
24 |
Liu J. Study on the deterioration processes of organic coating/low alloy steel systems in simulated deep-sea environment [D]. Qingdao: Ocean University of China, 2011
|
|
刘杰. 模拟深海环境下有机涂层/低合金钢体系失效过程的研究 [D]. 青岛: 中国海洋大学, 2011
|
25 |
Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
|
|
刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
|
26 |
Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 Steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
|
|
王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
|
27 |
Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
|
|
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|