Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1264-1272    DOI: 10.11902/1005.4537.2023.107
Current Issue | Archive | Adv Search |
Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel
ZHANG Qinhao1, ZHU Zejie2, CAI Haoran1, LI Xinran1, MENG Xianze1, LI Hao1, WU Liankui1, LUO Zhuangzhu1, CAO Fahe1()
1.School of Materials, Sun Yat-sen University, Shenzhen 518107, China
2.School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
Cite this article: 

ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1264-1272.

Download:  HTML  PDF(7104KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ion selective electrode technology (ISET) based on scanning electrochemical microscopy (SECM) enables in situ monitoring of non-electrochemically active substances at both micron and submicron scales of the metal/solution interface. However, the research on the stability, potential response time, and anti-ion interference ability of ISET is obviously insufficient. In this paper, an all-solid platinum/iridium oxide (Pt/IrO x ) electrochemical microsensor with pH response was prepared by deposing an iridium oxide thin film on the surface of a 10 μm diameter platinum ultra-microelectrode. Its linear response, instantaneous potential response, stability and anti-ion interference ability were analyzed. The results showed that the prepared Pt/IrO x -pH microsensor electrode exhibited excellent linear response performance in the range of pH=1.00-13.00 (R2=0.999) and high stability in both the short term (within 20000 s) and the long term (within 110 d). When the pH value of the solution changed, the potential of the Pt/IrO x -pH microsensor could change instantaneously, namely the sensor responds quickly to the solution pH value. Moreover, after adding Fe2+, Cu2+ and Cl- into the solution, the linear response and stability of the sensor remain unchanged with high anti-interference ability. However, the addition of Ti3+ could affect the accuracy of the microsensor detection. The prepared Pt/IrO x -pH microsensor was further applied to investigate the galvanic corrosion of copper and 304 stainless steel in 3.5% NaCl solution with pH=2.00. The results of SECM surface and line scanning images combined with OCP results showed that when the galvanic corrosion of Cu and 304 stainless steel began, Cu acted as the cathode and 304 stainless steel was the anode. However, after 12 h immersion, the polarity of anode and cathode was reversed, that is, Cu was the anode and 304 stainless steel was the cathode, and the surface pH value of Cu was lower.

Key words:  scanning electrochemical microscope      pH microsensor      anti-ionic interference ability      galvanic corrosion     
Received:  13 April 2023      32134.14.1005.4537.2023.107
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52001301);National Natural Science Foundation of China(52071347);National Natural Science Foundation of China(52201096);National Natural Science Foundation of China(52201097);China Postdoctoral Science Foundation(2022M723574)
Corresponding Authors:  CAO Fahe, E-mail: caofh5@mail.sysu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.107     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1264

Fig.1  CV curve of diameter 10 μm Pt UME in 1 mmol/L FcMeOH+0.1 mol/L KNO3 solution (a), and optical photo of electrode surface after deposition of IrO x (b)
Fig.2  Response potential and fitting curve of Pt/IrO x -pH micro-sensor electrode at different pH (a), instantaneous response curve of the Pt/IrO x -pH electrode to pH change (b), short-term stability of the Pt/IrO x -pH electrode in 0.01 mol/L HCl solution (c) and long-term stability of the Pt/IrO x -pH electrode when placed in air (d)
Fig.3  OCP (a) and linear relationship between response potential and pH and its fitting curve of Pt/IrO x -pH sensor in 3.5% NaCl solution with different pH value (b), OCP of Pt/IrO x -pH sensor in 3.5% NaCl solution (pH=2.00) containing 5 mmol/L Ti3+, Fe2+ and Cu2+, respectively (c), electrode potential of Pt/IrO x -pH sensor in 5 mmol/L Fe2+ or Cu2+ solution and its fitting curve (d)
Fig.4  Surface scanning diagram of Cu electrode in 3.5% NaCl solution with pH=2.00 after immersion for 0 h (a), 6 h (b), 12 h (c), and comparison of surface scanning of Pt/IrO x -pH microsensor electrode on Cu surface with distance of 5 μm in the three immersion times (d)
Fig.5  Surface scanning of 304 stainless steel in 3.5% NaCl solution with pH=2.00 after immersion for 0 h (a), 6 h (b), 12 h (c), and comparison of surface scanning of Pt/IrO x -pH microsensor electrode on 304 stainless steel with distance of 5 μm in the three immersion times (d)
Fig.6  Surface scanning of Cu (a-d) and 304 stainless steel (e-h) galvanic corrosion under different immersion times in 3.5% NaCl solution with pH=2.00, in which results of surface scans at 0 h (a, e), 6 h (b, f), 12 h (c, g), and comparison of surface scanning of Pt/IrO x -pH microsensor electrode on sample surface with distance of 5 μm in the three immersion times (d, f)
Fig.7  Line scanning curves of Pt/IrO x -pH electrode on Cu/304 stainless steel surface with distance of 5 μm in 3.5% NaCl solution with pH=2.00
Fig.8  OCP of Cu and 304 stainless steel under different immersion times with galvanic corrosion in 3.5%NaCl solution with pH=2.00: (a) 0 h, (b) 6 h, (c) 12 h
1 Wang L W, Li X G, Du C W, et al. Recent advances in local electrochemical measurement techniques and applications in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 498
王力伟, 李晓刚, 杜翠薇 等. 微区电化学测量技术进展及在腐蚀领域的应用 [J]. 中国腐蚀与防护学报, 2010, 30: 498
2 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
徐 迪, 杨小佳, 李清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
3 Bai Y H, Zhang H, Zhu Z J, et al. Research progress of monitoring ion concentration variation of micro-areas in corrosion crevice interior [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 828
白一涵, 张 航, 朱泽洁 等. 缝隙腐蚀内部微区离子浓度监测的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 828
doi: 10.11902/1005.4537.2022.325
4 Li H, Zhang S T, Qiang Y J. Corrosion retardation effect of a green cauliflower extract on copper in H2SO4 solution: Electrochemical and theoretical explorations [J]. J. Mol. Liq., 2021, 321: 114450
doi: 10.1016/j.molliq.2020.114450
5 Li H, Qiang Y J, Zhao W J, et al. 2-mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating [J]. Corros. Sci., 2021, 191: 109715
doi: 10.1016/j.corsci.2021.109715
6 Zhu Z J, Zhang Q H, Liu P, et al. Application of microelectrochemical sensors in monitoring of localized interface pH [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 367
朱泽洁, 张勤号, 刘 盼 等. 微型电化学传感器在界面微区pH监测中的应用 [J]. 中国腐蚀与防护学报, 2019, 39: 367
doi: 10.11902/1005.4537.2019.136
7 Gerlach G, Guenther M, Sorber J, et al. Chemical and pH sensors based on the swelling behavior of hydrogels [J]. Sensor. Actuat. B-Chem., 2005, 111/112B: 555
8 Matsuura K, Asano Y, Yamada A, et al. Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor [J]. Sensors, 2013, 13: 2484
doi: 10.3390/s130202484 pmid: 23429511
9 Takeshita Y, Martz T R, Johnson K S, et al. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater [J]. Anal. Chem., 2014, 86: 11189
doi: 10.1021/ac502631z pmid: 25325617
10 Glanc-Gostkiewicz M, Sophocleous M, Atkinson J K, et al. Performance of miniaturised thick-film solid state pH sensors [J]. Sens. Actuators, 2013, 202A: 2
11 Gu Y H, Dong L, Song Q F. Preparation of micro metal oxide pH electrode and its application in corrosion and protection [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 971
顾玉慧, 董 亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展 [J]. 中国腐蚀与防护学报, 2023, 2023, 43: 971
12 Sardarinejad A, Maurya D K, Alameh K. The pH sensing properties of RF sputtered RuO2 thin-film prepared using different Ar/O2 flow ratio [J]. Materials, 2015, 8: 3352
doi: 10.3390/ma8063352
13 Maurya D K, Sardarinejad A, Alameh K. High-sensitivity pH sensor employing a sub-micron ruthenium oxide thin-film in conjunction with a thick reference electrode [J]. Sensor. Actuat. B-Chem., 2013, 203: 300
14 Kuo L M, Chen K N, Chuang Y L, et al. A flexible pH-sensing structure using WO3/IrO2 junction with Al2O3 encapsulation layer [J]. ECS Solid State Lett., 2012, 2: P28
doi: 10.1149/2.004303ssl
15 Chen D C, Wang Z, Zheng J S, et al. Preparation of W/WO3 pH electrode with a method of sol-gel and its surface film micro-analysis [J]. J. Funct. Mater., 2004, 35 (suppl.) : 1003
陈东初, 王 哲, 郑家燊 等. W/WO3 pH电极的制备以及表面膜微观分析研究 [J]. 功能材料, 2004, 35 (增刊) : 1003
16 Ha Y, Wang M. Capillary melt method for micro antimony oxide pH electrode [J]. Electroanalysis, 2006, 18: 1121
doi: 10.1002/elan.v18:11
17 Ghalwa N A, Hamada M, Abu-Shawish H M, et al. Using of Ti/Co3O4/PbO2/ (SnO2+Sb2O3) modified electrode as indicator electrode in potentiometric and conductometric titration in aqueous solution [J]. J. Electroanal. Chem., 2012, 664: 7
doi: 10.1016/j.jelechem.2011.10.005
18 Zhang Q H, Ye Z N, Zhu Z J, et al. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM [J]. Corros. Sci., 2018, 139: 403
doi: 10.1016/j.corsci.2018.05.021
19 Zhang Q H, Liu P, Zhu Z J, et al. Quantitative analysis of the polarization behavior of iron in an aerated acidic solution using SECM [J]. Electrochem. Commun., 2018, 93: 143
doi: 10.1016/j.elecom.2018.07.007
20 Zhang Q H, Liu P, Zhu Z J, et al. The study of the H2O2 during oxygen reduction process on typically corroding metal surface using tip generation-substrate collection mode of SECM [J]. Corros. Sci., 2020, 164: 108312
doi: 10.1016/j.corsci.2019.108312
21 Liu P, Zhang Q H, Zhang J Q, et al. Rapid synthesis of highly oriented hydrophobic silicalite-1 zeolite films on alloy steel at lower temperature for corrosion protection [J]. Chem. Eng. J., 2022, 430: 133173
doi: 10.1016/j.cej.2021.133173
22 Bard A J, Mirkin M V. Scanning Electrochemical Microscopy [M]. 2nd ed. Boca Raton: CRC Press, 2012
23 Zhu Z J, Liu X Y, Ye Z N, et al. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential [J]. Sensor. Actuat. B-Chem., 2018, 255B: 1974
24 Zhu Z J, Ye Z N, Zhang Q H, et al. Novel dual Pt-Pt/IrO x ultramicroelectrode for pH imaging using SECM in both potentiometric and amperometric modes [J]. Electrochem. Commun., 2018, 88: 47
doi: 10.1016/j.elecom.2018.01.018
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[3] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[4] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[5] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[6] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[7] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[8] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[9] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[10] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[11] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[12] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[13] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[14] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[15] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
No Suggested Reading articles found!