Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 531-539    DOI: 10.11902/1005.4537.2021.164
Current Issue | Archive | Adv Search |
Research Progress of Galvanic Corrosion in Marine Environment
TENG Lin, CHEN Xu()
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
Download:  HTML  PDF(1741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper sums up the influencing factors and test methods of galvanic corrosion, which is widely existing in marine engineering. Galvanic corrosion is mainly affected by metal itself and environmental factors. And the paper summarizes the research on galvanic corrosion in marine environment at home and abroad in recent years. The application of various test methods and characterization methods for galvanic corrosion in marine environment and the latest progress are introduced. Finally, the research direction in this field is prospected, which provides new ideas for researchers in related fields.

Key words:  marine environment      galvanic corrosion      influencing factor      research method     
Received:  13 July 2021     
ZTFLH:  TG174  
Fund: "Chunhui" International Cooperation Project of the Ministry of Education;辽宁省教育厅面上项目(LJKZ0416)
Corresponding Authors:  CHEN Xu     E-mail:  cx0402@sina.com
About author:  CHEN Xu, E-mail: cx0402@sina.com

Cite this article: 

TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 531-539.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.164     OR     https://www.jcscp.org/EN/Y2022/V42/I4/531

Fig.1  A pure iron electrode during immersion in 0.1 mol/L NaCl: (a) Ionic current mapping, (b) amperometric curves for Fe2+ obtained above the scratched iron surface, when the tip potential was set at+0.60 and -0.70 V, respectively[55]
Fig.2  Mappings at 1 Hz above the zinc/steel couple in the 0.06 g/L NaCl solution: (a) admittance modulus, (b) phase[60]
Fig.3  Surface potential distribution of Zn/Fe couple measured at 298 K: (a) surface potential profile of a model Zn/Fe couple measured in 60%RH, (b) surface potential change on a model of Zn/Fe couple measured in artificial seawater under 60%RH, (c) surface potential change on a model of Zn/Fe couple measured in artificial seawater under 90%RH[64]
Fig.4  SKP potential maps obtained with the SKP on a sample of AZ91D magnesium alloy coupled with 2A12 accelerated testing in salt spray fog chamber: (a) 2 h, (b) 8 h, (c) 24 h, (d) 48 h[65]
1 Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51
2 Tian Z D, Wu X W. Galvanic couple corrosion and countermeasures for sea water piping [J]. Ship Boat, 2012, 23(5): 52
田志定, 武兴伟. 舰船海水管系电偶腐蚀及其防护措施 [J]. 船舶, 2012, 23(5): 52
3 Wang Q F, Pu Z, Shuai M B, et al. Galvanic corrosion behavior of DU-2A12 aluminium alloy couple in 3.5%NaCl solution [J]. Rare Met. Mater. Eng., 2014, 43(suppl.1) : 393
王庆富, 蒲朕, 帅茂兵 等. DU-2A12铝合金在3.5%NaCl溶液中的电偶腐蚀行为 [J]. 稀有金属材料与工程, 2014, 43(): 393
4 Bland L G, Rincon Troconis B C, Santucci Jr R J, et al. Metallurgical and electrochemical characterization of the corrosion of a Mg-Al-Zn alloy AZ31B-H24 tungsten inert gas weld: galvanic corrosion between weld zones [J]. Corrosion, 2016, 72: 1226
doi: 10.5006/2078
5 Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
doi: 10.5006/1.3277305
6 Zhang Y, Dai M A. Galvanic corrosion of ship-building steel couple with low potential-difference in seawater [J]. J. Chin. Soc. Corros. Prot., 1993, 13: 86
张英, 戴明安. 海水中舰船钢低电位差电偶的腐蚀 [J]. 中国腐蚀与防护学报, 1993, 13: 86
7 Zhao M Q, Lei A L. Corrosion and Protection of Metal [M]. Beijing: National Defense Industry Press, 2008
赵麦群, 雷阿丽. 金属的腐蚀与防护 [M]. 北京: 国防工业出版社, 2008
8 Yang S W, Xi H Z, Xie F Z, et al. Study of naval vessel galvanic corrosion [J]. J. Harbin Eng.Univ., 2000, 21(6): 34
杨世伟, 席慧智, 谢辅洲 等. 舰船材料的电偶腐蚀研究 [J]. 哈尔滨工程大学学报, 2000, 21(6): 34
9 Luo Z H, Long P, Yang S W, et al. An expression of galvanic corrosion effect under diffusion control [J]. Corros. Prot., 1996, (4): 162
罗兆红, 龙萍, 杨世伟 等. 扩散控制条件下电偶腐蚀效应的一种表达式 [J]. 腐蚀与防护, 1996, (4): 162
10 Wang Z J, Wang Y M, Wang C L. Area ratio of cathode/anode effect on the galvanic corrosion of high potential difference coupling in seawater [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 322: 022046
11 Liu D, Ai J Z, Guo X P. Galvanic corrosion behaviors of carbon steel under carbon dioxide (CO2) environment [J]. Nat. Gas Ind., 2007, 27(10): 114
刘东, 艾俊哲, 郭兴蓬. 二氧化碳环境中碳钢电偶腐蚀行为研究 [J]. 天然气工业, 2007, 27(10): 114
12 Jia J X, Song G L, Atrens A. Influence of geometry on galvanic corrosion of AZ91D coupled to steel [J]. Corros. Sci., 2006, 48: 2133
doi: 10.1016/j.corsci.2005.08.013
13 Shi L J, Song Y W, Zhao P P, et al. Variations of galvanic currents and corrosion forms of 2024/Q235/304 tri-metallic couple with multivariable cathode/anode area ratios: experiments and modeling [J]. Electrochim. Acta, 2020, 359: 136947
doi: 10.1016/j.electacta.2020.136947
14 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of Mg alloy AE44/mild steel in 3.5% NaCl solution [J]. Mater. Prot., 2020, 53(6): 27
丁清苗, 秦永祥, 崔艳雨. Mg合金AE44/低碳钢在 3.5%NaCl溶液中的电偶腐蚀研究 [J]. 材料保护, 2020, 53(6): 27
15 Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263
16 Arya C, Vassie P R W. Influence of cathode-to-anode area ratio and separation distance on galvanic corrosion currents of steel in concrete containing chlorides [J]. Cem. Concr. Res., 1995, 25: 989
doi: 10.1016/0008-8846(95)00094-S
17 Sun Y H, Li Z Y, Zhang W Z, et al. Study on galvanic corrosion of titanium alloy and 95# steel [J]. Equip. Environ. Eng., 2014, 11(2): 7
孙禹宏, 李竹影, 张旺洲 等. 钛合金和95#钢的电偶腐蚀研究 [J]. 装备环境工程, 2014, 11(2): 7
18 Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
19 Wang C L, Wu J H, Yuan M. Effect of temperature on the galvanic corrosion of Cu-Ni alloy/high strength steel in seawater [J]. MATEC Web of Conf., 2016, 67: 07039
20 Cui Y Y, Dilinuer D, Yu H, et al. Electrochemical corrosion behavior of 4J36 and 4J36-X80 couple pairs [J]. Mater. Prot., 2020, 53(9): 18
崔艳雨, 迪丽努尔·迪力木拉提, 禹浩 等. 4J36及4J36-X80偶对电化学腐蚀行为研究 [J]. 材料保护, 2020, 53(9): 18
21 Zhou B C, Zhang X Y, Feng L, et al. Effect of temperature on galvanic corrosion current for carbon fiber composites with metals [J]. China Synth. Fiber Ind., 2019, 42(5): 37
周柄岑, 张新异, 冯龙 等. 温度对碳纤维复合材料与金属间电偶腐蚀电流的影响 [J]. 合成纤维工业, 2019, 42(5): 37
22 Yin Z F, Yan M L, Bai Z Q, et al. Galvanic corrosion associated with SM 80SS steel and Ni-based alloy G3 couples in NaCl solution [J]. Electrochim. Acta, 2008, 53: 6285
doi: 10.1016/j.electacta.2008.04.029
23 Varela F E, Kurata Y, Sanada N. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple (prediction by boundary element method) [J]. Corros. Sci., 1997, 39: 775
doi: 10.1016/S0010-938X(97)89341-9
24 Shalaby L A. Galvanic coupling of Ti with Cu and Al alloys in chloride media [J]. Corros. Sci., 1971, 11: 767
doi: 10.1016/S0010-938X(71)80010-0
25 Tavakkolizadeh M, Saadatmanesh H. Galvanic corrosion of carbon and steel in aggressive environments [J]. J. Compos. Constr., 2001, 5: 200
doi: 10.1061/(ASCE)1090-0268(2001)5:3(200)
26 Zhu X R, Dai M A, Chen Z J, et al. Corrosion behaviour of metallic materials in high velocity seawater [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 173
朱相荣, 戴明安, 陈振进 等. 高流速海水中金属材料的腐蚀行为 [J]. 中国腐蚀与防护学报, 1992, 12: 173
27 Gao X X, Guo J Z, Pan D W, et al. Galvanic corrosion between high strength steel and TA2 (micro arac oxidation) under three flow rates [J]. Equip. Environ. Eng., 2017, 14(2): 90
高心心, 郭建章, 潘大伟 等. 三种流速下高强钢与微弧氧化钛电偶腐蚀研究 [J]. 装备环境工程, 2017, 14(2): 90
28 Dai M A, Zhang Y, Yin Z A, et al. Dynamics of galvanic corrosion in flowing seawater [J]. Corros. Sci. Prot. Technol., 1992, 4: 209
戴明安, 张英, 殷正安 等. 流动海水中电偶腐蚀动力学规律 [J]. 腐蚀科学与防护技术, 1992, 4: 209
29 Sun B K, Li N, Du M. Galvanic corrosion behavior of B10/H62 couple in seawater of different flowing rate [J]. Mater. Prot., 2011, 44(7): 20
孙保库, 李宁, 杜敏. 不同流速海水中B10/H62电偶腐蚀规律 [J]. 材料保护, 2011, 44(7): 20
30 Dexter S C, Lafontaine J P. Effect of natural marine biofilms on galvanic corrosion [J]. Corrosion, 1998, 54: 851
doi: 10.5006/1.3284804
31 Gao J Y. Influence of typical marine microorganisms on the galvanic corrosion between EH40 and B10 [D]. Beijing: University of Chinese Academy of Sciences, 2019
高洁艳. 海洋典型微生物对EH40/B10电偶腐蚀的影响 [D]. 北京: 中国科学院大学, 2019
32 Gao J Y, Wu J J, Zhang D. Impact of Pseudoalteromonas sp. on galvanic corrosion between B10 and EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 77
高洁艳, 吴佳佳, 张盾. 假交替单胞菌对EH40/B10电偶腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 77
33 Guo Z L, Li W J, Wang H R. Electric couple corrosion of a new type nickel aluminum bronze alloy [J]. Mater. Prot., 2005, 38(1): 5
郭泽亮, 李文军, 王洪仁. 新型镍铝青铜的电偶腐蚀行为研究 [J]. 材料保护, 2005, 38(1): 5
34 Blasco-Tamarit E, Igual-Muñoz A, García-Antón J. Galvanic corrosion of high alloyed austenitic stainless steel welds in LiBr systems [J]. Corros. Sci., 2007, 49: 4452
doi: 10.1016/j.corsci.2007.05.020
35 Turhan M C, Li Q Q, Jha H, et al. Corrosion behaviour of multiwall carbon nanotube/magnesium composites in 3.5%NaCl [J]. Electrochim. Acta, 2011, 56: 7141
doi: 10.1016/j.electacta.2011.05.082
36 Su X H, Kong X D, Wang K, et al. Corrosion inhibition effect of several inhibitors on 907 steel-ZL 102 Al alloy coupling in 3%NaCl solution [J]. Corros. Sci. Prot. Technol., 2015, 27: 368
苏小红, 孔小东, 王楷 等. 几种缓蚀剂对钢-铝偶合体在3%NaCl溶液中的缓蚀作用研究 [J]. 腐蚀科学与防护技术, 2015, 27: 368
37 Zhao Y, Li X K, Hong X J, et al. Galvanic corrosion behavior between supporting groove 6005A-T6 Aluminum alloy and 304 stainless steel adapting piece [J]. Alum. Fabr., 2020, (5): 60
赵岩, 李新魁, 洪晓静 等. 高速列车支撑槽6005A-T6铝合金/304不锈钢连接件电偶腐蚀行为研究 [J]. 铝加工, 2020, (5): 60
38 Ren K Y, Shi M M, Dai Y Z. Galvanic corrosion behavior of 09MnNiDR and stainless steel in 3.5%NaCl solution [J]. Technol. Dev. Chem. Ind., 2018, 47(9): 66
任科洋, 石毛毛, 戴亚洲. 09MnNiDR与不锈钢在 3.5%的NaCl溶液中的电偶腐蚀行为研究 [J]. 化工技术与开发, 2018, 47(9): 66
39 Hur S Y, Kim K T, Yoo Y R, et al. Effects of NaCl concentration and solution temperature on the galvanic corrosion between CFRP and AA7075T6 [J]. Corros. Sci. Technol., 2020, 19: 75
40 Xavier J R. Galvanic corrosion of copper/titanium in aircraft structures using a cyclic wet/dry corrosion test in marine environment by EIS and SECM techniques [J]. SN Appl. Sci., 2020, 2: 1341
doi: 10.1007/s42452-020-3145-x
41 Du X Q, Yang Q S, Chen Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 570
doi: 10.1016/S1003-6326(14)63097-1
42 Ai J Z, Guo X P, Chen Z Y. The adsorption behavior and corrosion inhibition mechanism of anionic inhibitor on galvanic electrode in 1%NaCl solution [J]. Appl. Surf. Sci., 2005, 253: 683
doi: 10.1016/j.apsusc.2005.12.153
43 Iverson W P. Transient voltage changes produced in corroding metals and alloys [J]. J. Electrochem. Soc., 1968, 115: 617
doi: 10.1149/1.2411362
44 Ettefagh Far S H, Davoodi A. Galvanic corrosion behavior of plain carbon steel-B4C composite in 3.5% NaCl solution with electrochemical noise [J]. J. Cent. South Univ., 2017, 24: 1
doi: 10.1007/s11771-017-3402-3
45 Sakairi M, Otani K, Sasaki R. Electrochemical noise evaluation of metal cation effects on galvanic corrosion of aluminum alloys in low concentration of chloride ion containing solutions [J]. Procedia Eng., 2014, 86: 589
doi: 10.1016/j.proeng.2014.11.084
46 Huang G Q, Yu M J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46
47 Zhang Y C, Wu Y S, Zhang J. Galvanic corrosion of rusty cast iron and 304 stainless steel [J]. Corros. Sci. Prot. Technol., 2001, 13: 66
张艳成, 吴荫顺, 张健. 带锈铸铁与304不锈钢的电偶腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 66
48 El-Dahshan M E, Shams El Din A M, Haggag H H. Galvanic corrosion in the systems titanium/316 L stainless steel/Al brass in Arabian Gulf water [J]. Desalination, 2002, 142: 161
doi: 10.1016/S0011-9164(01)00435-0
49 Clark W J, Ramsey J D, Mccreery R L, et al. A galvanic corrosion approach to investigating chromate effects on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2002, 149: B179
doi: 10.1149/1.1469031
50 Cui T F, Liu D X, Shi P A, et al. Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy [J]. Mater. Corros., 2016, 67: 72
51 Bastos A C, Simões A M, Ferreira M G. Corrosion of electrogalvanized steel in 0.1 M NaCl studied by SVET [J]. Port. Electrochim. Acta, 2003, 21: 371
doi: 10.4152/pea.200304371
52 Wang L W, Li X G, Du C W, et al. Recent advances in local electrochemical measurement techniques and applications in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 498
王力伟, 李晓刚, 杜翠薇 等. 微区电化学测量技术进展及在腐蚀领域的应用 [J]. 中国腐蚀与防护学报, 2010, 30: 498
53 Akid R, Garma M. Scanning vibrating reference electrode technique: a calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity [J]. Electrochim. Acta, 2004, 49: 2871
doi: 10.1016/j.electacta.2004.01.069
54 Zhang P H, Pang K, Ding K K, et al. Research progress of scanning vibrating electrode technique in field of corrosion [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 315
张彭辉, 逄昆, 丁康康 等. 扫描振动电极技术在腐蚀领域的应用进展 [J]. 中国腐蚀与防护学报, 2017, 37: 315
55 Simões A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell [J]. Corros. Sci., 2007, 49: 726
doi: 10.1016/j.corsci.2006.04.021
56 Deshpande K B. Experimental investigation of galvanic corrosion: comparison between SVET and immersion techniques [J]. Corros. Sci., 2010, 52: 2819
doi: 10.1016/j.corsci.2010.04.023
57 Zhang C, Xu C B. A localized A. C. impedance scanning technique and study of metallic galvanic corrosion [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 137
张春, 许川壁. 局部交流阻抗扫描技术对金属电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 1989, 9: 137
58 Taylor S R. Incentives for using local electrochemical impedance methods in the investigation of organic coatings [J]. Prog. Org. Coat., 2001, 43: 141
doi: 10.1016/S0300-9440(01)00183-7
59 Li Z W, Li Y, Qin Y K, et al. Progress in applications of EIS, LEIS, and DEIS in research of metal corrosion and protection [J]. Electropl. Finish., 2018, 37: 404
李祝文, 李岩, 秦永坤 等. EIS、LEIS和DEIS在金属腐蚀与防护研究中的应用进展 [J]. 电镀与涂饰, 2018, 37: 404
60 Mouanga M, Puiggali M, Tribollet B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2013, 88: 6
doi: 10.1016/j.electacta.2012.10.002
61 Tan Y J, Yu S T. The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode: part II [J]. Prog. Org. Coat., 1991, 19: 257
doi: 10.1016/0033-0655(91)80028-H
62 Cao K L, Cheng C Q, Zhao J. Influence of flow conditions on inhomogeneous corrosion behavior of stainless steel/carbon steel galvanic couple by WBE technique [J]. Mater. Prot., 2016, 49(7): 27
曹快乐, 程从前, 赵杰. 丝束电极技术研究流体对不锈钢/碳钢电偶腐蚀非均匀性行为的影响 [J]. 材料保护, 2016, 49(7): 27
63 Liu H J. The investigation of galvanic corrosion under the organic coating on ship steel [D]. Qingdao: Ocean University of China, 2011
刘华剑. 有机涂层下船用钢电偶腐蚀规律研究 [D]. 青岛: 中国海洋大学, 2011
64 Yadav A P, Katayama H, Noda K, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte [J]. Electrochim. Acta, 2007, 52: 3121
doi: 10.1016/j.electacta.2006.09.061
65 Xiao K, Dong C F, Wei D, et al. Galvanic corrosion of magnesium alloy and aluminum alloy by kelvin probe [J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2016, 31: 204
[1] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[2] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[3] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[4] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[5] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[6] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[7] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[8] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[9] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[10] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[11] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[12] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[13] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[14] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[15] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
No Suggested Reading articles found!