|
|
Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution |
LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang( ) |
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China |
|
Cite this article:
LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1016-1026.
|
Abstract The galvanic corrosion behavior for the galvanic pair of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution was studied by means of electrochemical methods and surface analysis techniques. For the galvanic pair of AZ91D Mg-alloy/2002 Al-alloy in the NaCl solution, Mg-alloy always acted as anode, thus its corrosion potential positively shifted, while corrosion rate increased. This could be attributed to that the galvanic effect between the two alloys significantly accelerated its cathode process. On the other hand, Al-alloy, always acted as cathode, its corrosion potential also positively shifted, and the corrosion rate increased. This could be ascribed to that the galvanic effect between the two alloys inhibited the formation of the passivation film on its surface. With the extension of immersion time, the coupling potential of the two alloys shifted towards positive first and then gradually negative, and finally reached a relatively stable state. The galvanic current densities increased first and then decreased and increased gradually again, and finally reached a relatively stable state. The research results not only enriched the knowledge of galvanic corrosion, but also provided a theoretical basis for the selection and design of automotive engine materials and the inhibition of the galvanic corrosion of multi-metal pairs.
|
Received: 10 December 2021
|
|
Fund: National Natural Science Foundation of China(51401151);Natural Science Foundation of Hubei Province(2018CFB525);Graduate Innovative Fund of Wuhan Institute of Technology(CX2021345);President Foundation of Wuhan Institute of Technology(XZJJ2021074) |
About author: HUANG Hualiang, E-mail: 51032265@qq.com
|
[1] |
Ji H C, Li Y M, Long H Y, et al. Application and development of magnesium alloy in automobile parts [J]. Found. Technol., 2019, 40: 122
|
|
(纪宏超, 李轶明, 龙海洋 等. 镁合金在汽车零部件中的应用与发展 [J]. 铸造技术, 2019, 40: 122)
|
[2] |
Li M G, Wang M J, Lv W J. Application and status quo of lightweight automotive materials [J]. Auto Time, 2020, (8): 31
|
|
(李洺君, 王明明, 吕文静. 汽车轻量化材料的应用及现状 [J]. 时代汽车, 2020, (8): 31)
|
[3] |
Wei F X. Application analysis of aluminum and magnesium alloys in Dongfeng commercial vehicle engines [J]. Int. Combust. Eng. Part., 2021, (6): 16
|
|
(魏芳玺. 铝、镁合金在东风商用车发动机中的应用分析 [J]. 内燃机与配件, 2021, (6): 16)
|
[4] |
Li G J, Liu X L. Literature review on research and development of automotive lightweight technology [J]. Mater. Sci. Technol., 2020, 28(5): 47
|
|
(李光霁, 刘新玲. 汽车轻量化技术的研究现状综述 [J]. 材料科学与工艺, 2020, 28(5): 47)
|
[5] |
Yang Z X, Liao S H. Application of light alloy in automotive lightweight [J]. Automob. Part., 2021, (1): 107
|
|
(杨甄鑫, 廖抒华. 轻质合金在汽车轻量化中的应用 [J]. 汽车零部件, 2021, (1): 107)
|
[6] |
Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
doi: 10.1016/S0010-938X(03)00109-4
|
[7] |
Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
|
|
(郏义征, 赵明君, 程世婧 等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463)
|
[8] |
Ding F Z, Yu P L, Chang G C, et al. Galvanic corrosion behavior and three protection techniques of magnesium alloy coupled to A6N01S-T5 aluminum alloy in NaCl solution [J]. Mater. Sci. Forum, 2011, 686: 146
doi: 10.4028/www.scientific.net/MSF.686.146
|
[9] |
Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
doi: 10.1016/j.corsci.2020.109203
|
[10] |
Xiao K, Dong C F, Wei D, et al. Galvanic corrosion of magnesium alloy and aluminum alloy by kelvin probe [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31: 204
|
[11] |
Huang D, Hu J, Song G L, et al. Galvanic corrosion and inhibition of GW103 and AZ91D Mg alloys coupled to an Al alloy in an ethylene glycol solution at ambient and elevated temperatures [J]. Corrosion, 2012, 68: 475
doi: 10.5006/i0010-9312-68-6-475
|
[12] |
Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
|
[13] |
Shao L. study on Corrosion Behavior of aluminum alloy in 3.5% NaCl solution and external cathodic current protection[D]. Harbin: Harbin Engineering University, 2012
|
|
(邵麟. 铝合金在 3.5%NaCl溶液中的腐蚀行为研究及外加阴极电流保护[D]. 哈尔滨: 哈尔滨工程大学, 2012)
|
[14] |
Sun D M. The mechanism of pitting corrosion and rare-earth surface modification on aluminum alloy [D]. Shanghai: Fudan University, 2009
|
|
(孙道明. 铝合金点蚀过程与稀土沉积的机理研究 [D]. 上海: 复旦大学, 2009)
|
[15] |
Wang Y H, Zhen C, Zhang Z, et al. Corrosion behavior of an AZ91D magnesium alloy under a heterogeneous electrolyte layer [J]. PLoS One, 2020, 15: e0234981
doi: 10.1371/journal.pone.0234981
|
[16] |
Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
|
|
(王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
|
[17] |
Yang W L, Liu Z Q, Huang H L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water [J]. Corros. Sci., 2021, 188: 109562
doi: 10.1016/j.corsci.2021.109562
|
[18] |
Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2017
|
|
(李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
|
[19] |
Huang D B. The investigation on inhibitors for magnesium and its alloys in ethylene glycol and NaCl solutions [D]. Wuhan: Huazhong University of Science and Technology, 2012
|
|
(黄道兵. 乙二醇和NaCl溶液中镁合金缓蚀剂及其机理研究 [D]. 武汉: 华中科技大学, 2012)
|
[20] |
Liu W D, Cao F H, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solutions [J]. Corrosion, 2012, 68: 045001
|
[21] |
Dong J H, Tan L L, Ren Y B, et al. Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank's solution [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 305
doi: 10.1007/s40195-018-0750-4
|
[22] |
Huang H L, Yang W L. Corrosion behavior of AZ91D magnesium alloy in distilled water [J]. Arab. J. Chem., 2020, 13: 6044
doi: 10.1016/j.arabjc.2020.05.004
|
[23] |
Verdier S, van der Laak N, Delalande S, et al. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS [J]. Appl. Surf. Sci., 2004, 235: 513
doi: 10.1016/j.apsusc.2004.03.250
|
[24] |
Wang L, Shinohara T, Zhang B P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J]. Appl. Surf. Sci., 2010, 256: 5807
doi: 10.1016/j.apsusc.2010.02.058
|
[25] |
Kazansky L P, Pronin Y E, Arkhipushkin I A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface [J]. Corros. Sci., 2014, 89: 21
doi: 10.1016/j.corsci.2014.07.055
|
[26] |
Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
|
|
(于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553)
|
[27] |
Liu W F, Sun G, Chen Y Z, et al. Effect of Cl- concentration and pH value on the corrosion behavior of AZ31 magnesium alloy [J]. J. Taiyuan Univ. Sci. Technol., 2009, 30: 221
|
|
(刘文峰, 孙钢, 陈永哲 等. Cl-浓度和pH值对AZ31镁合金腐蚀行为的影响 [J]. 太原科技大学学报, 2009, 30: 221)
|
[28] |
Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Found. Equip., 2007, (3): 19
|
|
(张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备研究, 2007, (3): 19)
|
[29] |
Mehta D S, Masood S H, Song W Q. Investigation of wear properties of magnesium and aluminum alloys for automotive applications [J]. J. Mater. Process. Technol., 2004, 155/156: 1526
|
[30] |
Zhang J, Zhang T, Shao Y W, et al. Crevice corrosion behavior of 5083 and 6061 aluminum alloys [J]. Corros. Sci. Prot. Technol., 2014, 26: 125
|
|
(张晋, 张涛, 邵亚薇 等. 5083和6061铝合金缝隙腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26: 125)
|
[31] |
Zhang M. Research on corrosion behavior of printed circuit boards and its influencing factors [D]. Xiamen: Xiamen University, 2008
|
|
(张敏. 印刷电路板的腐蚀行为及其影响因素研究 [D]. 厦门: 厦门大学, 2008)
|
[32] |
Li P. Eroding mechanism and control of airplane aluminous alloy frame component [J]. Total Corros. Control, 2006, 20(2): 36
|
|
(李鹏. 飞机铝合金结构件的腐蚀机理与控制 [J]. 全面腐蚀控制, 2006, 20(2): 36)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|