Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1016-1026    DOI: 10.11902/1005.4537.2021.355
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution
LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang()
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Cite this article: 

LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1016-1026.

Download:  HTML  PDF(9168KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion behavior for the galvanic pair of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution was studied by means of electrochemical methods and surface analysis techniques. For the galvanic pair of AZ91D Mg-alloy/2002 Al-alloy in the NaCl solution, Mg-alloy always acted as anode, thus its corrosion potential positively shifted, while corrosion rate increased. This could be attributed to that the galvanic effect between the two alloys significantly accelerated its cathode process. On the other hand, Al-alloy, always acted as cathode, its corrosion potential also positively shifted, and the corrosion rate increased. This could be ascribed to that the galvanic effect between the two alloys inhibited the formation of the passivation film on its surface. With the extension of immersion time, the coupling potential of the two alloys shifted towards positive first and then gradually negative, and finally reached a relatively stable state. The galvanic current densities increased first and then decreased and increased gradually again, and finally reached a relatively stable state. The research results not only enriched the knowledge of galvanic corrosion, but also provided a theoretical basis for the selection and design of automotive engine materials and the inhibition of the galvanic corrosion of multi-metal pairs.

Key words:  AZ91D Mg-alloy      2002 Al-alloy      galvanic corrosion      SEM      XPS     
Received:  10 December 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51401151);Natural Science Foundation of Hubei Province(2018CFB525);Graduate Innovative Fund of Wuhan Institute of Technology(CX2021345);President Foundation of Wuhan Institute of Technology(XZJJ2021074)
About author:  HUANG Hualiang, E-mail: 51032265@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.355     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1016

Fig.1  Potential and potential difference of AZ91D Mg-alloy and 2002 Al-alloy with different time in 0.5 mg/L NaCl at 30 ℃: (a) potential at the beginning of 24 h, (b) potential of Mg-alloy at different soaking time under uncoupling and coupling conditions, (c) potential of Al-alloy at different soaking time under uncoupling and coupling conditions, (d) potential difference between Mg-alloy and Al-alloy at different soaking time under uncoupling and coupling conditions
Fig.2  Polarization curves of AZ91D Mg-alloy (a) and 2002 Al-alloy (b) immersed in 0.5 mg/L NaCl solution at 30 ℃ for 24 hours under the condi-tions of uncoupling and uncoupling after coupling
MaterialConditionBc / mV·dec-1Icorr / A·cm-2Ecorr / V
Mg-alloyUncoupling-215.507.43×10-7-1.43
Coupling-144.932.22×10-6-1.42
Al-alloyUncoupling-233.561.57×10-6-0.51
Coupling-554.994.36×10-6-0.49
Table 1  Fitting parameters of polarization curves of AZ91D Mg-alloy and 2002 Al-alloy immersed in 0.5 mg/L NaCl solution at 30 ℃ for 24 h under the conditions of uncoupling and uncoupling after coupling
Fig.3  Nyquist (a, c) and Bode (b, d) diagrams of AZ91D Mg-alloy (a,b) and 2002 Al-alloy (c, d) immersed in 0.5 mg/L NaCl solution at 30 ℃ for 24 h under the conditions of uncoupling and uncoupling after coupling
Fig.4  Equivalent circuits used for fitting the tested EIS data for AZ91D Mg-alloy (a) and 2002 Al-alloy (b)
MaterialCondition

Rs

Ω·cm2

Cf1

F·cm-2

Rf1

Ω·cm2

CPEf2

S·snf1·cm-2

nf2

Rf2

Ω·cm2

CPEdl

S·snf2·cm-2

ndl

Rct

Ω·cm2

Rp

Ω·cm2

Mg-alloyUncoupling124.37------8.27×10-80.93301301.38×10-50.861691547045
Coupling94.86------6.59×10-80.97129281.40×10-50.751043123359
Al-alloyUncoupling68.302.86×10-7128401.31×10-70.9225145.05×10-50.78609454624808
Coupling24.561.10×10-817174.48×10-50.8933133.87×10-40.782497030000
Table 2  EIS fitting parameters of AZ91D Mg-alloy and 2002 Al-alloy immersion in 0.5 mg/L NaCl solution at 30 ℃ for 24 h under the conditions of uncoupling and coupling
Fig.5  Nyquist (a, c) and Bode (b,d) diagrams of AZ91D Mg-alloy (a, b) and 2002 Al-alloy (c, d) immersed in 0.5 mg/L NaCl solution at 30 ℃ for different time under the condition of uncoupling after coupling
Materialt / h

Rs

Ω·cm2

Cf1

F·cm-2

Rf1

Ω·cm2

CPEf2

S·snf1·cm-2

nf2

Rf2

Ω·cm2

CPEdl

S·snf2·cm-2

ndl

Rct

Ω·cm2

Rp

Ω·cm2

AZ91D Mg-alloy2494.86------6.59×10-80.97129281.40×10-50.751043123359
4884.75------9.05×10-90.95105242.79×10-50.862151932103
7259.82------2.54×10-80.9663161.20×10-50.891376420080
9649.66------1.23×10-80.9724495.09×10-40.751481417263
2002 Al-alloy2424.561.10×10-817174.48×10-50.8933133.87×10-40.782497030000
4888.151.33×10-831086.49×10-50.87152522.13×10-40.777666495024
7236.061.21×10-831066.11×10-50.89146112.63×10-40.871809335810
9662.881.41×10-829541.73×10-50.90142884.08×10-30.94856325805
Table 3  EIS fitting paramaters of AZ91D Mg-alloy and 2002 Al-alloy with different immersion time under coupling condition in 0.5 mg/L NaCl solution at 30 ℃
Fig.6  Time dependence of coupled potentials (a) and galvanic current densities (b) between AZ91D Mg-alloy and 2002 Al-alloy in 0.5 mg/L NaCl solution for immersion 96 h at 30 ℃
Fig.7  SEM surface morphologies of AZ91D Mg-alloy immersed in 0.5 mg/L NaCl solution at 30 ℃ for 24 h under the conditions of uncoupling (a) and uncoupling after coupling (b)
Fig.8  SEM surface morphologies of 2002 Al-alloy under uncoupling (a) and coupling (b) conditions after immersion 24 h in 0.5 mg/L NaCl solution at 30 ℃
Fig.9  XPS of the surface film of AZ91D Mg-alloy under coupling condition after immersion 24 h in 0.5 mg/L NaCl solution at 30 ℃: (a) survey spectra, (b) Mg 1s, (c) O 1s, (d) Cl 2p
Fig.10  XPS of the surface film of 2002 Al-alloy under coupling condition after immersion 24 h in 0.5 mg/L NaCl solution at 30 ℃: (a) survey spectra, (b) Al 2p, (c) O 1s, (d) Cl 2p
Fig.11  Schematic diagram of the galvanic corrosion mechanism between AZ91D Mg-alloy and 2002 Al-alloy in 0.5 mg/L NaCl solution at 30 ℃ at initial stage (a), middle stage (b) and later stage (c)
[1] Ji H C, Li Y M, Long H Y, et al. Application and development of magnesium alloy in automobile parts [J]. Found. Technol., 2019, 40: 122
(纪宏超, 李轶明, 龙海洋 等. 镁合金在汽车零部件中的应用与发展 [J]. 铸造技术, 2019, 40: 122)
[2] Li M G, Wang M J, Lv W J. Application and status quo of lightweight automotive materials [J]. Auto Time, 2020, (8): 31
(李洺君, 王明明, 吕文静. 汽车轻量化材料的应用及现状 [J]. 时代汽车, 2020, (8): 31)
[3] Wei F X. Application analysis of aluminum and magnesium alloys in Dongfeng commercial vehicle engines [J]. Int. Combust. Eng. Part., 2021, (6): 16
(魏芳玺. 铝、镁合金在东风商用车发动机中的应用分析 [J]. 内燃机与配件, 2021, (6): 16)
[4] Li G J, Liu X L. Literature review on research and development of automotive lightweight technology [J]. Mater. Sci. Technol., 2020, 28(5): 47
(李光霁, 刘新玲. 汽车轻量化技术的研究现状综述 [J]. 材料科学与工艺, 2020, 28(5): 47)
[5] Yang Z X, Liao S H. Application of light alloy in automotive lightweight [J]. Automob. Part., 2021, (1): 107
(杨甄鑫, 廖抒华. 轻质合金在汽车轻量化中的应用 [J]. 汽车零部件, 2021, (1): 107)
[6] Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
doi: 10.1016/S0010-938X(03)00109-4
[7] Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
(郏义征, 赵明君, 程世婧 等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463)
[8] Ding F Z, Yu P L, Chang G C, et al. Galvanic corrosion behavior and three protection techniques of magnesium alloy coupled to A6N01S-T5 aluminum alloy in NaCl solution [J]. Mater. Sci. Forum, 2011, 686: 146
doi: 10.4028/www.scientific.net/MSF.686.146
[9] Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
doi: 10.1016/j.corsci.2020.109203
[10] Xiao K, Dong C F, Wei D, et al. Galvanic corrosion of magnesium alloy and aluminum alloy by kelvin probe [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31: 204
[11] Huang D, Hu J, Song G L, et al. Galvanic corrosion and inhibition of GW103 and AZ91D Mg alloys coupled to an Al alloy in an ethylene glycol solution at ambient and elevated temperatures [J]. Corrosion, 2012, 68: 475
doi: 10.5006/i0010-9312-68-6-475
[12] Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
[13] Shao L. study on Corrosion Behavior of aluminum alloy in 3.5% NaCl solution and external cathodic current protection[D]. Harbin: Harbin Engineering University, 2012
(邵麟. 铝合金在 3.5%NaCl溶液中的腐蚀行为研究及外加阴极电流保护[D]. 哈尔滨: 哈尔滨工程大学, 2012)
[14] Sun D M. The mechanism of pitting corrosion and rare-earth surface modification on aluminum alloy [D]. Shanghai: Fudan University, 2009
(孙道明. 铝合金点蚀过程与稀土沉积的机理研究 [D]. 上海: 复旦大学, 2009)
[15] Wang Y H, Zhen C, Zhang Z, et al. Corrosion behavior of an AZ91D magnesium alloy under a heterogeneous electrolyte layer [J]. PLoS One, 2020, 15: e0234981
doi: 10.1371/journal.pone.0234981
[16] Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
(王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
[17] Yang W L, Liu Z Q, Huang H L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water [J]. Corros. Sci., 2021, 188: 109562
doi: 10.1016/j.corsci.2021.109562
[18] Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2017
(李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
[19] Huang D B. The investigation on inhibitors for magnesium and its alloys in ethylene glycol and NaCl solutions [D]. Wuhan: Huazhong University of Science and Technology, 2012
(黄道兵. 乙二醇和NaCl溶液中镁合金缓蚀剂及其机理研究 [D]. 武汉: 华中科技大学, 2012)
[20] Liu W D, Cao F H, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solutions [J]. Corrosion, 2012, 68: 045001
[21] Dong J H, Tan L L, Ren Y B, et al. Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank's solution [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 305
doi: 10.1007/s40195-018-0750-4
[22] Huang H L, Yang W L. Corrosion behavior of AZ91D magnesium alloy in distilled water [J]. Arab. J. Chem., 2020, 13: 6044
doi: 10.1016/j.arabjc.2020.05.004
[23] Verdier S, van der Laak N, Delalande S, et al. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS [J]. Appl. Surf. Sci., 2004, 235: 513
doi: 10.1016/j.apsusc.2004.03.250
[24] Wang L, Shinohara T, Zhang B P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J]. Appl. Surf. Sci., 2010, 256: 5807
doi: 10.1016/j.apsusc.2010.02.058
[25] Kazansky L P, Pronin Y E, Arkhipushkin I A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface [J]. Corros. Sci., 2014, 89: 21
doi: 10.1016/j.corsci.2014.07.055
[26] Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
(于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553)
[27] Liu W F, Sun G, Chen Y Z, et al. Effect of Cl- concentration and pH value on the corrosion behavior of AZ31 magnesium alloy [J]. J. Taiyuan Univ. Sci. Technol., 2009, 30: 221
(刘文峰, 孙钢, 陈永哲 等. Cl-浓度和pH值对AZ31镁合金腐蚀行为的影响 [J]. 太原科技大学学报, 2009, 30: 221)
[28] Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Found. Equip., 2007, (3): 19
(张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备研究, 2007, (3): 19)
[29] Mehta D S, Masood S H, Song W Q. Investigation of wear properties of magnesium and aluminum alloys for automotive applications [J]. J. Mater. Process. Technol., 2004, 155/156: 1526
[30] Zhang J, Zhang T, Shao Y W, et al. Crevice corrosion behavior of 5083 and 6061 aluminum alloys [J]. Corros. Sci. Prot. Technol., 2014, 26: 125
(张晋, 张涛, 邵亚薇 等. 5083和6061铝合金缝隙腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26: 125)
[31] Zhang M. Research on corrosion behavior of printed circuit boards and its influencing factors [D]. Xiamen: Xiamen University, 2008
(张敏. 印刷电路板的腐蚀行为及其影响因素研究 [D]. 厦门: 厦门大学, 2008)
[32] Li P. Eroding mechanism and control of airplane aluminous alloy frame component [J]. Total Corros. Control, 2006, 20(2): 36
(李鹏. 飞机铝合金结构件的腐蚀机理与控制 [J]. 全面腐蚀控制, 2006, 20(2): 36)
[1] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[2] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[4] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[5] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[6] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[8] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[9] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[10] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[11] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[12] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[13] LIU Xuanxuan, YU Jinshan, GAO Yan, ZHAO Peng, WANG Qiwei, DU Zhuoling, ZHANG Junxi. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[14] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[15] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
No Suggested Reading articles found!