Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 391-398    DOI: 10.11902/1005.4537.2022.109
Current Issue | Archive | Adv Search |
Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling
XING Shaohua1(), LIU Jinzeng1,2, BAI Shuyu1, QIAN Yao1,2, ZHANG Dalei2, MA Li1
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Download:  HTML  PDF(7340KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Copper-nickel alloys B10 and B30 are the main materials of marine seawater piping and coolers respectively. The two alloys have different corrosion potential due to the different nickel content, and thus there is a risk of galvanic corrosion for the couple of B10 and B30 when the pipes are connected to the cooling equipment. Especially in the working conditions of flowing seawater, the diffusion of corrosive media and corrosion products may be aggravated. In order to control the corrosion of the galvanic couple B10/B30 and prolong the service life of seawater pipeline, in this paper, the galvanic potential and galvanic current of the couple B10 and B30 in static and flowing seawater (1, 3 and 5 m/s) are monitored in situ, to acquire the variation of the galvanic corrosion rate with time and flow rate. The results show that, in static seawater, the galvanic corrosion tendency of the couple B10/B30 is small, and the corrosion rate of B10 as the anode slightly increases at the beginning of the experiment, while after 40 h test, the galvanic current approaches zero. In flowing seawater, the anodic polarization current density of B10 and the cathodic polarization current density of B30 increases significantly, B10 always acts as anode and the galvanic corrosion is significantly intensified, the galvanic corrosion rate at flow speed 1 m/s is 79 times that in static seawater. As the flow speed of seawater increases, the current density of the couple B10/B30 increases and the corrosion rate of the couples accelerates. The galvanic corrosion rate of the couple B10/B30 is controlled by both the B10 anodic reaction and the B30 cathodic reaction according to mix potential analysis.

Key words:  seawater pipeline      copper nickel alloy      flowing seawater      galvanic corrosion     
Received:  14 April 2022      32134.14.1005.4537.2022.109
ZTFLH:  TG174  
About author:  XING Shaohua, E-mail: xingsh@sunrui.net

Cite this article: 

XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 391-398.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.109     OR     https://www.jcscp.org/EN/Y2023/V43/I2/391

Fig.1  Corrosion potential of B10 (a) and B30 (b) samples in different flow rate seawater
Fig.2  Variation curves of galvanic potential of B10/B30 in different flow rate seawater with time
Fig.3  Galvanic current density of B10/B30 in different flow rate seawater with time
Fig.4  Variation curves of galvanic current density and galvanic potential with flow velocity
Fig.5  Corrosion morphologies of B10 (a-d), B30 (e, h) couple in seawater at 0 m/s (a, e), 1 m/s (b, f), 3 m/s (c, g) and 5 m/s (d, h) flow rates
Fig.6  SEM micrographs of coupled B10 corrosion at 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d) flow rates
Velocity (m/s)PositionFeClCuNi
0Whole surface1.793.6958.5710.60
1Whole surface1.114.9853.4910.02
3A0..936.2346.3010.61
B0.831.2470.139.69
5A1.22---45.6616.84
B1.24---59.9815.88
Table 1  Elemental composition of corrosion products of coupled B10
Fig.7  Surface micro-morphologies of coupling B10 after removing corrosion products: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.8  Corrosion kinetics of B10/B30 couple at different flow rate seawater: (a) 0 and 1 m/s, (b) 3 and 5 m/s, (c) different periods at 0 m/s, (d) different periods at 1 m/s
Fig.9  Mechanism of galvanic corrosion of B10/B30 couple in static seawater
Fig.10  Galvanic corrosion mechanism of B10/ B30 couple in flowing seawater
[1] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[2] Yang S W, Xi H Z, Xie F Z, et al. Study of naval vessel galvanic corrosion [J]. J. Harbin Eng. Univ., 2000, 21(6): 34
(杨世伟, 席慧智, 谢辅洲 等. 舰船材料的电偶腐蚀研究 [J]. 哈尔滨工程大学学报, 2000, 21(6): 34)
[3] Wang H B, Fang Z G. Control of galvanic corrosion of dissimilar metals of seawater pipelines in naval vessels [J]. Corros. Sci. Prot. Technol., 2007, 19: 145
(王虹斌, 方志刚. 舰船海水管系异金属电偶腐蚀的控制 [J]. 腐蚀科学与防护技术, 2007, 19: 145)
[4] Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4+ [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
(王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4 + 污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609)
[5] Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
[6] Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
(张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43)
[7] Peng W S, Duan T G, Hou J, et al. Corrosion behavior of B10 copper-nickel alloy after full immersion in indoor simulated seawater and real seawater [J]. Equip. Environ. Eng., 2020, 17(8): 63
(彭文山, 段体岗, 侯健 等. 室内与实海环境中B10铜镍合金海水全浸腐蚀研究 [J]. 装备环境工程, 2020, 17(8): 63)
[8] Tao H, Yu Y, Zhao G C, et al. Standard status and proposal of B30 copper alloy heat transfer tube for condensers of naval ships [J]. Dev. Appl. Mater., 2021, 36(1): 96
(陶欢, 郁炎, 赵国超 等. 舰船冷凝器用B30铜合金传热管标准体系 [J]. 材料开发与应用, 2021, 36(1): 96)
[9] Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
(魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513)
[10] Yang F, Zheng Y G, Yao Z M, et al. Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater [J]. J. Chin. Soc. Corros. Prot., 1999, 19(4): 16
(杨帆, 郑玉贵, 姚治铭 等. 铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为 [J]. 中国腐蚀与防护学报, 1999, 19(4): 16)
[11] Li Q F, Li C H, Xu L K, et al. Corrosion behavior of B30 Cu-Ni alloy and anti -corrosion coating in marine environment [J]. Trans. Nonferrous Met. Soc. China, 2007, 17 (Spec. 1): 161
[12] Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
doi: 10.1016/j.corsci.2006.07.003
[13] Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol.-Mater., Suf. Interfaces, 2007, 1: 33
[14] Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 65
(黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 65)
[15] Sun B K, Li N, Du M. Galvanic corrosion behavior of B10/H62 couple in Seawater of different flowing rates [J]. Mater. Prot., 2011, 44(7): 20
(孙保库, 李宁, 杜敏. 不同流速海水中B10/H62电偶腐蚀规律 [J]. 材料保护, 2011, 44(7): 20)
[16] Zhang H L, Li N, Xue J J, et al. Galvanic corrosion and insulation control between industrial pure titanium and albata [J]. Corros. Prot., 2010, 31: 615
(张海丽, 李宁, 薛建军 等. 工业纯钛与铜镍合金的电偶腐蚀及电绝缘控制 [J]. 腐蚀与防护, 2010, 31: 615)
[17] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
(雷冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
[18] Zhu X L, Lin L Y, Xu J, et al. Review of corrosion product films of Cu-Ni alloys in seawater [J]. Mater. Sci. Technol., 1997, 5(2): 24
(朱小龙, 林乐耘, 徐杰 等. Cu-Ni合金海水蚀产物膜研究进展 [J]. 材料科学与工艺, 1997, 5(2): 24)
[19] Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20(1): 12
(杜娟, 王洪仁, 杜敏 等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20(1): 12)
[20] Efird K D. Effect of fluid dynamics on the corrosion of copper-base alloys in sea water [J]. Corrosion, 1977, 33: 3
doi: 10.5006/0010-9312-33.1.3
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[3] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[5] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[6] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[7] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[8] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[9] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[10] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[11] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[12] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[13] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[14] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[15] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
No Suggested Reading articles found!