Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 507-512    DOI: 10.11902/1005.4537.2021.120
Current Issue | Archive | Adv Search |
Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train
CHEN Zhijian1, ZHOU Xuejie1,2(), CHEN Hao1,3
1.Wuhan Research Institute of Materials Protection, Wuhan 430030, China
2.Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China
3.Yuli Materials Corrosion National Observation and Research Station, Yuli 841500, China
Download:  HTML  PDF(5762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion process of the riveted pair of 6A01 Al-alloy-/304 stainless steel-plate was assessed via cyclic salt spray test, aiming especially to clarify the corrosion behavior of the 6A01 Al-alloy, as the main component of the riveted pear. The corrosion kinetics, rust composition and corrosion morphology of the alloy samples were characterized by means of weightlessness method, scanning electron microscope (SEM), energy dispersive spectroscope (EDS), 3D super depth of field microscope and other methods. The results showed that galvanic corrosion and crevice corrosion occurred for the Al-alloy after being riveted onto 304 stainless steel, and its corrosion rate was 8-10 times higher than that of the blank alloy. The variation of corrosion products on the surface of Al-alloy may in turn affect the corrosion process of the Al-alloy. The cracking of the corrosion product can accelerate the corrosion process, whereas, the densification of the corrosion product may be beneficial to its protectiveness.

Key words:  riveting parts      6A01 Al- alloy      304 stainless steel      galvanic corrosion     
Received:  28 May 2021     
ZTFLH:  TG174  
Corresponding Authors:  ZHOU Xuejie     E-mail:  zhouxj11@163.com
About author:  ZHOU Xuejie, E-mail: zhouxj11@163.com

Cite this article: 

CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 507-512.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.120     OR     https://www.jcscp.org/EN/Y2022/V42/I3/507

Fig.1  Corrosion rates of 6A01 Al-alloy after corrosion for different time
Fig.2  Surface morphologies of 6A01 Al-alloy after cyclic salt spray experiment for 10 d (a), 20 d (b), 30 d (c), 40 d (d), 50 d (e) and 60 d (f)
Fig.3  Surface pitting pit morphologies of 6A01 Al-alloy lap joint after cyclic salt spray experiment for 10 d (deep 131 μm, width 485 μm) (a), 20 d (deep 185 μm, width 644 μm) (b), 30 d (deep 242 μm, width 323 μm) (c), 40 d (deep 245 μm, width 495 μm) (d) and 50 d (deep 321 μm, width 457 μm) (e)
Fig.4  Surface SEM images and EDS results after cyclic salt spray experiment 10 d (a), 20 d (b), 30 d (c), 40 d (d), 50 d (e) and 60 d (f)
Fig.5  XRD spectra of corrosion products of 6A01 Al- alloy after different salt spray cycles
Fig.6  Open circuit potential of 304 stainless steel and 6A0Al-alloy base material after cyclic salt spray experiment
Fig.7  Polarization curves of 6 groups of aluminum alloy after blank sample and cyclic salt spray experiment
Test time dIcorr10-6A·cm-2EcorrmVEpitmVPassivation interval / mV
00.19-567------
100.288-800-647---
200.428-911-627180
300.766-984-547320
400.764-996-564310
502.19-1083-556410
608.46-1170-568480
Table 1  Tafel fitting data of polarization curves
1 Ruan H M, Dong Z H, Shi W, et al. Effect of inhibitors on pitting corrosion of AA6063 aluminium alloy based on electrochemical noise [J]. Acta Phys.-Chim. Sin., 2012, 28: 2097
阮红梅, 董泽华, 石维等. 基于电化学噪声研究缓蚀剂对AA6063铝合金点蚀的影响 [J]. 物理化学学报, 2012, 28: 2097
2 Liu Y J, Wang Z Y, Ke W. Study on the galvanic corrosion of aluminium alloy and stainless steel under a thin electrolyte film [J]. Equip. Environ. Eng., 2015, 12(1): 1
刘艳洁, 王振尧, 柯伟. 薄液膜下铝合金与不锈钢电偶腐蚀研究 [J]. 装备环境工程, 2015, 12(1): 1
3 Gou G Q, Huang N, Chen H, et al. Research on corrosion behavior of A6N01S-T5 aluminum alloy welded joint for high-speed trains [J]. J. Mech. Sci. Technol., 2012, 26: 1471
4 Feng C, Huang Y H, Shen Y F, et al. Galvanic corrosion and protection of 6061 aluminum alloy coupled with 30CrMnSiA steel in simulative industry-marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2015, 25: 1417
冯驰, 黄运华, 申玉芳等. 6061铝合金与30CrMnSiA结构钢在模拟工业-海洋大气环境下的电偶腐蚀防护 [J]. 中国有色金属学报, 2015, 25: 1417
5 Mao Z D, Zheng Z Q, Li S Z, et al. Softening behavior of MIG welded joint of 6A01-T5 aluminum alloy for high-speed trains [J]. Hot Work. Technol., 2021, 50(1): 35
毛镇东, 郑自芹, 李帅贞等. 高速列车用6A01-T5铝合金MIG焊接接头软化行为研究 [J]. 热加工工艺, 2021, 50(1): 35
6 Liang J H, Zheng Z Q, Hang P P, et al. Corrosion behavior of 6A01 aluminium alloy welding joint under salt spray test [J]. Ord. Mater. Sci. Eng., 2020, 43(6): 54
梁景恒, 郑自芹, 杭平平等. 6A01铝合金焊接接头盐雾腐蚀行为研究 [J]. 兵器材料科学与工程, 2020, 43(6): 54
7 Lin S, Deng Y L, Tang J G, et al. Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2019, 745A: 63
8 Yin X T. Research on corrosion behavior of aluminum alloy materials in typical parts of motor vehicle body [D]. Beijing: China Academy of Machinery Science and Technology, 2019
尹学涛. 动车车体典型部位铝合金材料腐蚀行为研究 [D]. 北京: 机械科学研究总院, 2019
9 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
白苗苗, 白子恒, 蒋立等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
10 Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
11 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
12 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
刘艳洁, 王振尧, 王彬彬等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
13 Zhao W H, Wang H W, Cai G Y, et al. Localized corrosion and corrosion inhibitor of Al-alloy AA6061 beneath electrolyte layers [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 366
赵苇杭, 王浩伟, 蔡光义等. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理 [J]. 中国腐蚀与防护学报, 2017, 37: 366
14 Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferrous Met., 2009, 19: 346
董超芳, 安英辉, 李晓刚等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346
15 Liang W J, Rometsch P A, Cao L F, et al. General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu [J]. Corros. Sci., 2013, 76: 119
16 Clement K P. Evaluation of the effects of heat treatments on the mechanical and corrosion properties of aluminum alloy 7075 [D]. Tulsa: The University of Tulsa, 2019
17 Adams F V, Akinwamide S O, Obadele B, et al. Comparison study on the corrosion behavior of aluminum alloys in different acidic media [J]. Mater. Today: Proc., 2021, 38: 1040
18 Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
[1] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[2] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[3] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[4] DING Yi, WANG Liwei, LIU Deyun, WANG Xin. Microstructure and Properties of Dissimilar Metal Welded Joints of Low Alloy Steel and Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[5] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[6] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[7] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[9] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[10] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[11] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[12] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[13] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[14] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[15] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
No Suggested Reading articles found!