Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (2): 219-225    DOI: 10.11902/1005.4537.2020.033
Current Issue | Archive | Adv Search |
Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys
HUANG Tao1,2, XU Chunxiang1(), YANG Lijing2, LI Fuxia1,2, JIA Qinggong1, KUAN Jun1, ZHANG Zhengwei1, WU Xiaofeng1, WANG Zhongqi1,2
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030000, China
2.Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China
Download:  HTML  PDF(3772KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-3Zn-1Y-xZr (x=0, 0.2, 0.4, 0.6) alloys are prepared by traditional gravity casting. The influence of Zr amount on the microstructure and corrosion behavior of Mg-3Zn-1Y alloys is systematically investigated via optical microscope (OM), scanning electron microscope (SEM), mass loss testing and electrochemical testing. Results show that the Mg-3Zn-1Y alloy is mainly composed of α-Mg matrix and Mg3YZn6 (I) phase. The addition of Zr does not change the type of the second phase, while can remarkably refine the grains by increasing nucleation rate, optimize the structure and improve the corrosion resistance of Mg-3Zn-1Y alloys. Meanwhile, the addition of Zr can increase the corrosion potential of alloy substrate, reduce the corrosion current density, thereby decreasing the tendency of corrosion and inhibiting the corrosion. The mass loss results indicate that the Mg-3Zn-1Y-0.6Zr alloy has the best corrosion resistance with corrosion rate of (0.325±0.042) mm/a.

Key words:  Zr      microstructure      corrosion behavior      grain refinement      mass loss     
Received:  05 March 2020     
ZTFLH:  TG27  
Fund: National Natural Science Foundation of China(51574175);Ningbo Science and;Technology Innovation 2025 Major Project(2019B10104)
Corresponding Authors:  XU Chunxiang     E-mail:  xuchunxiang2020@126.com
About author:  XU Chunxiang, E-mail: xuchunxiang2020@126.com

Cite this article: 

HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 219-225.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.033     OR     https://www.jcscp.org/EN/Y2021/V41/I2/219

AlloyZnYZrFeAlCuSiMnMg
Mg-2Zn-1Y3.1100.907---0.0020.0010.0010.0030.002Bal.
Mg-2Zn-1Y-0.2Zr3.0371.1020.2130.0020.0020.0020.0010.002Bal.
Mg-2Zn-1Y-0.4Zr3.3501.0340.3790.0030.0030.0010.0020.001Bal.
Mg-2Zn-1Y-0.6Zr3.9151.1980.5580.0020.0020.0020.0010.002Bal.
Table 1  Chemical compositions of Mg-3Zn-1Y-xZr (x=0, 0.2, 0.4, 0.6) alloys (mass fraction / %)
Fig.1  XRD patterns of four investigated alloys
Fig.2  Metallographic structures of Mg-3Zn-1Y(a), Mg-3Zn-1Y-0.2Zr (b), Mg-3Zn-1Y-0.4Zr (c) and Mg-3Zn-1Y-0.6Zr (d) alloys
ElementmkGRF
Zr6.906.5538.30
Al-6.870.374.33
Zn-6.040.125.32
Y-3.400.501.70
Sr-3.530.0063.51
Ca-12.670.0611.91
Ce-2.860.042.75
Mn1.491.100.15
Table 2  GRF values and related parameters of various elements in magnesium[10]
Fig.3  Corrosion rates of four investigated alloys in the Hank's solution
Fig.4  Values of electrolyte pH as a function of immersion time
Fig.5  Corrosion morphologies of Mg-3Zn-1Y(a), Mg-3Zn-1Y-0.2Zr (b), Mg-3Zn-1Y-0.4Zr (c) and Mg-3Zn-1Y-0.6Zr (d) alloys after immersion in the Hank's solution for 240 h
Fig.6  Open circuit potential of four investigated alloys
Fig.7  Potentiodynamic polarization curves of four investigated alloys
AlloysEcorr / VIcorr / μA·cm-2
Mg-3Zn-1Y-1.71429.144
Mg-3Zn-1Y-0.2Zr-1.67918.437
Mg-3Zn-1Y-0.4Zr-1.65614.531
Mg-3Zn-1Y-0.6Zr-1.5859.325
Table 3  Fitting results of potentiodynamic polarization curve
Fig.8  Corrosion morphology of Mg-3Zn-1Y-0.6Zr alloy after immersion in the Hank's solution for 45 min
1 Qiao Z X, Shi Z M, Hort N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting [J]. Corros. Sci., 2012, 61: 185
2 Song G L, Shi Z M. Corrosion mechanism and evaluation of anodized magnesium alloys [J]. Corros. Sci., 2014, 85: 126
3 Feliu Jr S, Samaniego A, Barranco V, et al. The effect of low temperature heat treatment on surface chemistry and corrosion resistance of commercial magnesium alloys AZ31 and AZ61 in 0.6 M NaCl solution [J]. Corros. Sci., 2014, 80: 461
4 Tian Z, Song B, Liu Y B. Application and developing of AM magnesium alloy in automobile industry [J]. Automob. Technol. Mater., 2004, (7): 21
田政, 宋波, 刘勇兵. AM系镁合金在汽车工业中的应用与发展 [J]. 汽车工艺与材料, 2004, (7): 21
5 Feng X W, Qi W J, Li X H, et al. Microstructure and electrochemical corrosion properties of biomedical extruded Mg-Zn-Gd alloys [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 267
冯晓伟, 戚文军, 黎小辉等. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能 [J]. 中国腐蚀与防护学报, 2016, 36: 267
6 Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater., 2015, 13: 16
7 Luo T J, Yang Y S, Li Y J, et al. Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy [J]. Electrochim. Acta, 2009, 54: 6433
8 Li Z, Chen M F, Li W, et al. The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg-Zn-Zr-Sr alloy [J]. J. Alloy. Compd., 2017, 702: 290
9 StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
10 Liu H H. The effect of Zr on high temperature propert of the Mg-2.8Nd-0.35Zn magnesium alloy [D]. Harbin: Harbin University of Science and Technology, 2005
刘洪汇. Zr对Mg-2.8Nd-0.35Zn合金高温性能影响的研究 [D]. 哈尔滨: 哈尔滨理工大学, 2005
11 Zhao B. Study on microstructure and properties of Mg-Zn-Gd-Zr biodegradable magnesium alloy for cardioascular stent [D]. Taiyuan: Taiyuan University of Technology, 2017
赵兵. 心血管支架用生物可降解Mg-Zn-Gd-Zr镁合金的组织及性能研究 [D]. 太原: 太原理工大学, 2017
12 Tahreen N, Chen D L. A critical review of Mg-Zn-Y series alloys containing I, W, and LPSO phases [J]. Adv. Eng. Mater., 2016, 18: 1983
13 Liu L, Liu Z, Li J B, et al. Effect of Y content on corrosion resistance of Mg-Zn-Y alloys [J]. Hot Work. Technol., 2017, 46(20): 49
刘利, 刘正, 李吉宝等. Y含量对Mg-Zn-Y合金耐腐蚀性能的影响 [J]. 热加工工艺, 2017, 46(20): 49
14 Ji C X. Research on the microstructure and properties of Mg-Zn-Y-Nd(-Zr) alloys for aascular stent application [D]. Zhengzhou: Zhengzhou University, 2014
季川祥. 血管支架用Mg-Zn-Y-Nd(-Zr) 合金组织及性能研究 [D]. 郑州: 郑州大学, 2014
15 Chen Z, Zhang M L, Lv Y Z, et al. Role of zirconium in magnesium and magnesium alloys [J]. Foundry Technol., 2007, 28: 820
陈增, 张密林, 吕艳卓等. 锆在镁及镁合金中的作用 [J]. 铸造技术, 2007, 28: 820
16 Qu X L. Study on as-cast Mg-Sn-Al magnesium alloy [D]. Taiyuan: Taiyuan University of Technology, 2015
瞿祥落. 金属型铸造Mg-Sn-Al系合金的研究 [D]. 太原: 太原理工大学, 2015
17 Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2020, 39: 463
郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 39: 463
18 Song G L, Atrens A. Understanding magnesium corrosion—A framework for improved alloy performance [J]. Adv. Eng. Mater., 2003, 5: 837
19 Li J R, Jiang Q T, Sun H Y, et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution [J]. Corros. Sci., 2016, 111: 288
20 Song G L, Atrens A, Wu X L, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corros. Sci., 1998, 40: 1769
21 Bao L, Zhang Z Q, Le Q C, et al. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios [J]. J. Alloy. Compd., 2017, 712: 15
22 Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[1] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[2] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[3] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[4] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[5] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[7] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[9] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[12] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[13] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[14] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[15] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
No Suggested Reading articles found!