Please wait a minute...
J Chin Soc Corr Pro  2006, Vol. 26 Issue (3): 141-145     DOI:
Research Report Current Issue | Archive | Adv Search |
INFLUENCE OF THERMAL-RATE TREATMENT ON THE CORROSION RESISTANCE OF Mg-7Al-0.4Zn-0.2Mn ALLOY
;;;;
郑州大学材料科学与工程学院
Download:  PDF(487KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of thermal-rate treatment on the corrosion resistance of Mg-7Al-0.4Zn-0.2Mn(AZ70)alloy was studied by observing corrosion morphology,measuring corrosion potential and salt-spray corrosion rate.The results show that the corrosion behavior of AZ70 alloy depends on both its microstructure and iron content.When Ts is 850 ℃,grains are fined and the size of βphase and the distance betweenβphase pasticles are small.The corrosion barrier effect ofβ phase onαphase is enhanced and the iron content does not increase much at this temperature.So the corrosion resistance is improved.The corrosion resistance of AZ70 alloy falls off when Ts is 890 ℃,which attributes to the presence of microporosity,hot cracking and increase of iron content.At the same superheat-temperature,the corrosion resistance is improved with the increase of chilling rate.In comprehensive consideration of microstructure and corrosion resistance of AZ70 alloy,the optimal TRT process is that Ts=850 ℃ and Vc=2.0 ℃/s.In that case,the corrosion potential is 15 mV higher and the salt-spray corrosion rate is 21.9% lower than that of un-TRT treated alloy.
Key words:  Mg-7Al-0.4Zn-0.2Mn(AZ70) alloy      Thermal-rate treatment(TRT)      Microstructure      Grain refinement      Corrosion     
Received:  15 November 2005     
ZTFLH:  TG146.2  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. INFLUENCE OF THERMAL-RATE TREATMENT ON THE CORROSION RESISTANCE OF Mg-7Al-0.4Zn-0.2Mn ALLOY. J Chin Soc Corr Pro, 2006, 26(3): 141-145 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2006/V26/I3/141

[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!