Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 373-380    DOI: 10.11902/1005.4537.2019.109
Current Issue | Archive | Adv Search |
Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite
FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali()
College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Download:  HTML  PDF(3447KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Resin-filled recrystallized silicon carbide (EP/RSiC) composites with good corrosion resistance were prepared by using E44 epoxy resin as the filling material. The corrosion behavior of EP/RSiC composites in 2 mol/L H2SO4 solution and 4 mol/L NaOH solution at room temperature was studied by means of weight loss measurement, potentiodynamic polarization curves measurement, electrochemical impedance spectroscopy as well as corrosion morphology characterization. The results demonstrated that the EP/RSiC composites had a dense structure, low corrosion current density and high free-corrosion potential, and good corrosion resistance. Electrochemical tests suggested that the corrosion of EP/RSiC composites was caused by the active dissolution of silicon carbide. Therefore, EP/RSiC composites were more susceptible to corrosion by alkaline solutions, and their corrosion behavior was controlled by charge transfer. The corrosion rate decreased as the amount of epoxy resin filler increased, among others, the EP/RSiC with 15% (volume fraction) epoxy resin had the best corrosion resistance, namely its corrosion rate was 152 mg/(dm2·d) in 2 mol/L H2SO4 solution, while 310 mg/(dm2·d) in 4 mol/L NaOH solution respectively. Which demonstrates that the EP/RSiC with 15% epoxy resin exhibits a corrosion protection efficiency about 90.5% regarding to the plain RSiC without the addition of epoxy resin.

Key words:  recrystallized silicon carbide      epoxy resin      composite      corrosion      electrochemistry     
Received:  18 July 2019     
ZTFLH:  TB37  
Fund: State Key Laboratory of Associated Nonferrous Metal Resources Pressurized Hydrometallurgy Technology(yy2016007)
Corresponding Authors:  CAO Dali     E-mail:  caodali2008@126.com

Cite this article: 

FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 373-380.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.109     OR     https://www.jcscp.org/EN/Y2020/V40/I4/373

Fig.1  FT-IR spectra of E44-epoxy resin and EP/RSiC composite
Fig.2  XRD patterns of RSiC, E44-epoxy resin and EP/RSiC composite
Fig.3  SEM images of RSiC (a, b) and EP/RSiC (c, d) before (a, c) and after (b, d) corrosion
Fig.4  Polarization curves of RSiC and EP/RSiC samples in 2 mol/L H2SO4 solution (a) and 4 mol/L NaOH solution (b)
SolutionSampleEcorrVIcorrμA·cm2η
2 mol/L H2SO4RSiC-0.83117452.6---
8%EP/RSiC-0.7166681.082.1%
10%EP/RSiC-0.3742150.388.9%
15%EP/RSiC-0.3136342.990.5%
4 mol/L NaOHRSiC-0.3161378.3---
8%EP/RSiC0.101216.4091.8%
10%EP/RSiC0.124355.9292.4%
15%EP/RSiC0.158714.9693.7%
Table 1  Electrochemical parameters obtained from polarization curves
Fig.5  Nyquist (a) and Bode (b) plots of RSiC and EP/ RSiC samples in 2 mol/L H2SO4 solution
Fig.6  Nyquist (a) and Bode (b) plots of RSiC and EP/RSiC samples in 2 mol/L NaOH solution
Fig.7  Equivalent electric circuits of EIS for RSiC and EP/RSiC samples in 2 mol/L H2SO4 solution (a) and 4 mol/L NaOH solution (b)
SolutionSampleRs / Ω·cm2Rt / kΩ·cm2CPEtRf / kΩ·cm2CPEf
Ω-1·cm-2·SnnΩ-1·cm-2·Snn
2 mol/L H2SO4RSiC93.20.99273.000.998---------
8%EP/RSiC71.0126.0010.000.9980.929.850.995
10%EP/RSiC71.3148.009.910.9950.929.910.995
15%EP/RSiC72.0152.009.850.9950.9210.000.998
4 mol/L NaOHRSiC25.52.79423.000.759---------
8%EP/RSiC54.97.6229.200.998---------
10%EP/RSiC54.412.7013.100.995---------
15%EP/RSiC63.513.7010.900.996---------
Table 2  Electrochemical parameters obtained by fitting EIS
Fig.8  Variations of corrosion rates of RSiC和EP/RSiC samples in 2 mol/L H2SO4 solution (a) and 4 mol/L NaOH solution (b) with corrosion time
[1] Cheng W. The study on anticorrosive coatings on graphene-based steel surfaces [J]. Low Temp. Archit. Technol., 2018, 40(5): 5
(程为. 石墨烯基钢材表面防腐涂层的研究 [J]. 低温建筑技术, 2018, 40(5): 5)
[2] Wu G H. Development challenge and opportunity of metal matrix composites [J]. Acta Mater. Compos. Sin., 2014, 31: 1228
(武高辉. 金属基复合材料发展的挑战与机遇 [J]. 复合材料学报, 2014, 31: 1228)
[3] Yan Z Q, Xiong X, Xiao P, et al. Preparation of SiC coatings on surface of C/SiC composites by the chemical vapor deposition and their oxidation resistance behavior [J]. J. Chin. Ceram. Soc., 2008, 36: 1098
(闰志巧, 熊翔, 肖鹏等. C/SiC复合材料表面化学气相沉积涂覆SiC涂层及其抗氧化性能 [J]. 硅酸盐学报, 2008, 36: 1098)
[4] Lu Y J, Wang Y M, Wu L E, et al. Oxidation behavior of carbon nanoparticles/silicon carbide composite ceramics [J]. J. Chin. Ceram. Soc., 2013, 41: 1431
(陆有军, 王燕民, 吴澜尔等. 纳米碳颗粒/碳化硅陶瓷基复合材料的氧化行为 [J]. 硅酸盐学报, 2013, 41: 1431)
[5] Boehme O, Spetz A L, Lundstroem I, et al. ChemInform Abstract: Nanoparticles as the active element of high-temperature metal-insulator-silicon carbide gas sensors [J]. Adv. Mater., 2001, 13: 597
doi: 10.1002/(ISSN)1521-4095
[6] Guo W M, Xiao H N, Wen X, et al. A new design for preparation of high performance recrystallized silicon carbide [J]. Ceram. Int., 2012, 38: 2475
doi: 10.1016/j.ceramint.2011.11.016
[7] Herrmann M, Schilm J, Michael G. Corrosion behaviour of different technical ceramics in acids, basic solutions and under hydrothermal conditions [J]. Key Eng. Mater., 2004, 264-268: 877
doi: 10.4028/www.scientific.net/KEM.264-268
[8] Zhang L, Mao X, Chen G, et al. Chemical corrosion of liquid-phase sintered SiC in NaOH aqueous solution [J]. Corros. Eng. Sci. Technol., 2016, 51: 621
doi: 10.1080/1478422X.2016.1173420
[9] Zhu M, Wang R, Chen C, et al. Electrochemical study on the corrosion behavior of Ti3SiC2 in 3.5%NaCl solution [J]. RSC Adv., 2017, 7: 12534
doi: 10.1039/C6RA26239B
[10] Gao P Z, Zhang X L, Huang S T, et al. Influence of infiltration temperatures on microstructure and properties of MoSi2(Cr5Si3)-RSiC composites [J]. J. Chin. Ceram. Soc., 2014, 42: 1105
(高朋召, 张小亮, 黄诗婷等. 熔渗温度对MoSi2(Cr5Si3)-RSiC复合材料显微结构和性能的影响 [J]. 硅酸盐学报, 2014, 42: 1105)
[11] Weidenmann K A, Rixecker G, Aldinger F. Liquid phase sintered silicon carbide (LPS-SiC) ceramics having remarkably high oxidation resistance in wet air [J]. J. Eur. Ceram. Soc., 2006, 26: 2453
doi: 10.1016/j.jeurceramsoc.2005.05.015
[12] Kim W J, Hwang H S, Park J Y. Corrosion behavior of reaction-bonded silicon carbide ceramics in high-temperature water [J]. J. Mater. Sci. Lett., 2002, 21: 733
doi: 10.1023/A:1015797324658
[13] Cook S G, Little J A, King J E. Corrosion of silicon carbide ceramics using conventional and electrochemical methods [J]. Br. Corros. J., 1994, 29: 183
doi: 10.1179/000705994798267692
[14] Gu J W, Zhang Q Y, Dang J, et al. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy-composites [J]. Polym. Bull., 2009, 62: 689
doi: 10.1007/s00289-009-0045-z
[15] Jia S, Yao Z J, Zhang S S, et al. Anticorrosion performance of silane modified nano-TiO2-Zn-Al/waterborne epoxy coatings [J]. Acta Mater. Comp. Sin., 2018, 35(9): 2405
(贾涉, 姚正军, 张莎莎等. 硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能 [J]. 复合材料学报, 2018, 35(9): 2405)
[16] Hu C B, Li Y, Kong Y Z, et al. Preparation and anticorrosion performance of poly (o-chloroaniline) -nano SiC/epoxy resin composite [J]. Acta Mater. Compos. Sin., 2017, 34: 1167
(胡传波, 厉英, 孔亚州等. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能 [J]. 复合材料学报, 2017, 34: 1167)
[17] Li W L, Lin J, Yan M F, et al. Separation and characterization of Bisphenol-a epoxy resin paint [J]. Chem. World, 2002, 43: 574
(李万利, 林建, 颜明发等. 双酚A型环氧树脂涂料的分离及表征 [J]. 化学世界, 2002, 43: 574)
[18] He Y J. Preparation of polyaniline/nano-ZnO composites via a novel pickering emulsion route [J]. Powder Technol., 2004, 147: 59
doi: 10.1016/j.powtec.2004.09.038
[19] Andrews A, Herrmann M, Sephton M, et al. Electrochemical corrosion of solid and liquid phase sintered silicon carbide in acidic and alkaline environments [J]. J. Eur. Ceram. Soc., 2007, 27: 2127
doi: 10.1016/j.jeurceramsoc.2006.07.011
[20] Sui L L, Liu F, Chen X R, et al. Preparation and corrosion resistance of nano SiO2-graphene oxide/epoxy composite coating [J]. Acta Mater. Compos. Sin., 2018, 35: 1716
(随林林, 刘芳, 陈晓蕊等. 纳米SiO2-氧化石墨烯/环氧涂层的制备及其防腐蚀性能 [J]. 复合材料学报, 2018, 35: 1716)
[21] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 176
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 176)
[22] Kocijan A, Merl D K, Jenko M. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride [J]. Corros. Sci., 2011, 53: 776
[23] Khaled K F. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid [J]. Mater. Chem. Phys., 2008, 112: 290
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!