Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 332-341    DOI: 10.11902/1005.4537.2019.198
Current Issue | Archive | Adv Search |
Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials
ZHAO Baijie1, FAN Yi1, LI Zhenzhen2, ZHANG Bowei2(), CHENG Xuequn2
1. Jiangsu Key Laboratory for Premium Steel Materials, Nanjing Iron & Steel United Co. , Ltd. , Nanjing 210035, China
2. Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(16979KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316 stainless steel pate was paired face by face with four plates of different materials respectively, i.e. 316SS, tetrafluoroethylene, rubber and plastic, and then the crevice corrosion behavior of the 316SS for the above four pairs was assessed via immersion test in FeCl3 solution, while the relevant electrochemical performance was examined in an artificial seawater. After corrosion test, the samples were examined by laser confocal microscopy. Results show that among others, the pair 316SS/316SS presented the widest corrosion area with the most shallow depth, indicating that the corrosion pits tended to spread preferentially sideways. When the corrosion pits reach a certain depth, the lateral migration of corrosive solution got easier. The corrosion morphology of the pair 316SS/rubber showed the minimum width with the maximum depth, suggesting the longitudinal development of the corrosion pit, which is related to the stress applied on the rubber. In that case, the corrosive medium is closely attached to the steel surface, hence hard to migrate laterally into the gab, thereby the corrosion expanded vertically in depth. Furthermore, the relevant mechanisum of crevice corrosion for different type of pairings was analyzed through electrochemical measurements.

Key words:  crevice corrosion      stainless steel      contact surface      immersion     
Received:  04 November 2019     
ZTFLH:  TB304  
Fund: NSFC Youth Science Foundation Project(51901018);China Postdoctoral Science Foundation Funded Project(2019M660456);National Key R&D Project Central University Basic Scientific Research Business Fee(06500119)
Corresponding Authors:  ZHANG Bowei     E-mail:  bwzhang@ustb.edu.cn

Cite this article: 

ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 332-341.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.198     OR     https://www.jcscp.org/EN/Y2020/V40/I4/332

Fig.1  Diagram of packaging 316L stainless steel sample
Fig.2  Assembly drawing of the sample in crevice corrosion test (1-clamp gland; 2-fixture base; 3-glass ball; 4-PTFE gasket; 5-steel sheet/polytetrafluoroethylene sheet/rubber sheet/rubber sheet covered with plastic sheet; 6-mosaic sample)
Fig.3  Diagram of electrochemical testing device
Fig.4  Macro (a~c), micro (d~f) and 3D (g~i) morphologies of metal-metal contact surface after corrosion for 3 h (a, d, g), 6 h (b, e, h) and 12 h (c, f, i)
Fig.5  Profile curves of micro morphologies of metal-metal interface after corrosion for 3 h (a), 6 h (b) and 12 h (c)
Fig.6  Macro (a~c), micro (d~f) and 3D (g~i) images of metal-polytetrafluoroethylene contact surface after corrosion for 3 h (a, d, g), 6 h (b, e, h) and 12 h (c, f, i)
Fig.7  Profile curves of micro morphologies of metal-polyte-trafluoroethylene contact surface after corrosion for 3 h (a), 6 h (b) and 12 h (c)
Fig.8  Macro (a~c), micro (d~f) and 3D (g~i) images of metal-rubber contact surface after corrosion for 3 h (a, d, g), 6 h (b, e, h) and 12 h (c, f, i)
Fig.9  Profile curves of micro morphologies of metal-rubber contact surface after corrosion for 3 h (a), 6 h (b) and 12 h (c)
Fig.10  Macro (a~c), micro (d~f) and 3D (g~i) images of metal-plastic contact surface after corrosion for 3 h (a, d, g), 6 h (b, e, h) and 12 h (c, f, i)
Fig.11  Profile curves of micro morphologies of metal-plastic contact surface after corrosion for 3 h (a), 6 h (b) and 12 h (c)
Fig.12  Polarization curves of different contact interface specimens and seamless specimen
Fig.13  Polarization curves of different crevice corrosion specimens with metal-metal (a), metal-polytetrafluor-oethylene (b), metal-rubber (c) and metal-plastic (d) film contact interfaces
Fig.14  SEM images of different crevice corrosion samples with metal-metal (a), metal-polytetrafluoro-ethylene (b), metal-rubber (c) and metal-plastic (d) film contact interfaces after polarization tests
[1] Han D. Investigation on the mechanism of localized electrochemical corrosion behavior of duplex stainless stee [D]. Shanghai: Fudan University, 2012: 10
(韩冬. 双相不锈钢局部电化学失效行为与机理的研究 [D]. 上海: 复旦大学, 2012: 10)
[2] Liu D X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 128
(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 128)
[3] Ke W. Corrosion Investigation Report of China [M]. Beijing: Chemical Industry Press, 2003: 5
(柯伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003: 5)
[4] Xiao J M, Cao C N. Theory of Material Corrosion [M]. Beijing: Chemical Industry Press, 2002: 44
(肖纪美, 曹楚南. 材料腐蚀学原理 [M]. 北京: 化学工业出版社, 2002: 44)
[5] Wu J. Corrosion damage and protection technology of stainless steel (II) Crevice corrosion [J]. Corros. Prot., 1998, 18(2): 41
(吴剑. 不锈钢的腐蚀破坏与防蚀技术——(二)缝隙腐蚀 [J]. 腐蚀与防护, 1998, 18(2): 41)
[6] Al-Malahy K S E, Hodgkiess T. Comparative studies of the seawater corrosion behaviour of a range of materials [J]. Desalination, 2003, 158: 35
doi: 10.1016/S0011-9164(03)00430-2
[7] Malik A U, Ahmad S, Andijani I, et al. Corrosion behavior of steels in gulf seawater environment [J]. Desalination, 1999, 123: 205
doi: 10.1016/S0011-9164(99)00078-8
[8] Li X G. Introduction to Corrosion and Protection of Material [M]. 2nd Ed. Beijing: China Mechine Press, 2017
(李晓刚. 材料腐蚀与防护概论 [M]. 第2版. 北京: 机械工业出版社, 2017)
[9] Bao Q N. The relationship between chloride ion and the corrosion of stainless steel in cooling water system [J]. Ind. Water Treat., 2007, 27(9): 1
(鲍其鼐. 氯离子与冷却水系统中不锈钢的腐蚀 [J]. 工业水处理, 2007, 27(9): 1)
[10] Li M Y, Cui R X, Wei Y Q. A comparison of crevice corrosion behaviors of two stainless steels [J]. Contemp. Chem. Ind., 2008, 37(2): 119
(李美英, 崔荣星, 魏亚秋. 两种典型不锈钢的缝隙腐蚀敏感性对比研究 [J]. 当代化工, 2008, 37(2): 119)
[11] Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corros. Sci., 2001, 43(9): 1693
doi: 10.1016/S0010-938X(00)00167-0
[12] Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
doi: 10.1016/j.corsci.2011.08.012
[13] Chen D, Wu X, Han E-H, et al. Oxidation behavior of 304 stainless steel during crevice corrosion in high-temperature pure water [J]. Corrosion, 2015, 71(10): 1213
doi: 10.5006/1705
[14] Larché N, Thierry D, Debout V, et al. Crevice corrosion of duplex stainless steels in natural and chlorinated seawater [J]. Revue de Métall, 2011, 108: 451
doi: 10.1051/metal/2011080
[15] Rowlands J C. Crevice corrosion of stainless steels and nickel alloys under marine conditions [J]. Br. Corros. J., 1976, 11: 195
doi: 10.1179/000705976798319694
[16] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[17] Yu X F. Study of the intergranular corrosion of stainless steel (304, 316) by experimental and theoretical methods [D]. Ji’nan: Shandong University, 2010: 32
(于晓飞. 304、316不锈钢晶间腐蚀的实验与理论研究 [D]. 济南: 山东大学, 2010: 32)
[18] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
(陈兴伟, 吴建华, 王佳等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[19] Yang D J, Shen Z S. Corrosion Science of Metal [M]. 2nd Ed. Beijing: Metallurgical Industry Press, 1999: 57
(杨德钧, 沈卓身. 金属腐蚀学 [M]. 第2版. 北京: 冶金工业出版社, 1999: 57)
[20] Li H B, Jiang Z H, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels [J]. Int. J. Miner. Metall. Mater., 2009, 16: 517
doi: 10.1016/S1674-4799(09)60090-X
[21] Fan Q Q. Corrosion behaviors of 316L austenitic stainless steel [J]. Total Corros. Control, 2013, (11): 39
(范强强. 316L奥氏体不锈钢的腐蚀行为 [J]. 全面腐蚀控制, 2013, (11): 39)
[22] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
[23] Hou J G, An W J, Chang W, et al. Simulating study of the influence of crude oil on CO2 corrosion [J]. China Offshore Oil Gas, 2005, 17: 60
(侯建国, 安维杰, 常炜等. 原油对CO2腐蚀影响的模拟研究 [J]. 中国海上油气, 2005, 17: 60)
[24] Cai B, Liu Y, Tian X, et al. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater [J]. Corros. Sci., 2010, 52(10): 3235
doi: 10.1016/j.corsci.2010.05.040
[25] ASTM. ASTM G48-03 Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution [S]. West Conshohocken, PA: ASTM, 2003: 32
[26] Kain R M. Effects of surface finish on the crevice corrosion resistance of stainless steels in seawater and related environments [A]. CORROSION/91 [C]. Houston: 1991
[27] Larché N, Boillot P, Dezerville P, et al. Crevice corrosion performance of high-alloy stainless steels and Ni-based alloy in desalination industry [J]. Desalin. Water Treat., 2014, 55: 2491
doi: 10.1080/19443994.2014.968906
[28] Song Y Q, Du C W, Zhang X, et al. Influence of Cl- concentration on crevice corrosion of X70 pipeline steel [J]. Acta Metall. Sin., 2009, 45: 1130
(宋义全, 杜翠薇, 张新等. Cl-浓度对X70管线钢缝隙腐蚀的影响 [J]. 金属学报, 2009, 45: 1130)
[29] Zhao Y X, Yao L A, Gan F X. A study of crevice corrosion of titanium [J]. J. Chin. Soc. Corros. Prot., 1990, 10: 252
(赵永新, 姚禄安, 甘复兴. 钛缝隙腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 1990, 10: 252)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[14] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
No Suggested Reading articles found!