Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 463-468    DOI: 10.11902/1005.4537.2019.050
Current Issue | Archive | Adv Search |
Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid
JIA Yizheng1,ZHAO Mingjun2,CHENG Shijing3,WANG Baojie2,WANG Shuo4,SHENG Liyuan5,XU Daokui4()
1. Innovation and Practice Base for Postdoctors, Sichuan College of Architectural Technology, Deyang 618000, China
2. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
3. Chinese Academy of Sciences, Beijing 100864, China
4. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
5. Shenzhen Key Lab Human Tissue Regenerate & Repair, Shenzhen Institute, Peking University, Shenzhen 518057, China
Download:  HTML  PDF(4255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Mg-6Zn-1.2Y-0.8Nd alloy before and after pre-soaking in Hank's solution was comparatively studied. Results revealed that the surface corrosion products formed during pre-shoaking can protect the substrate from corrosion attack to a certain extent. After pre-soaking for 4 h, the product film formed on the surface was relatively uniform and had the best protective effect on the matrix. The corrosion current density was 1.98 μA/cm2. As the pre-soaking time was further extended, the corrosion products film formed on sample surfaces became thicker, and tend to be cracked and detached from the substrate, correspondingly the localized corrosion was accelerated, resulting in the decrease in their protective effect. After pre-soaking for 48 h, the corrosion current density of the alloy increased to 3.64 μA/cm2.

Key words:  Mg-alloy      biomaterial      corrosion product film      localized corrosion      immersion     
Received:  25 April 2019     
ZTFLH:  TG172.5  
Fund: Supported by National Natural Science Foundation of China(51701129);Supported by National Natural Science Foundation of China(51871211);Key Technology R&D Program of Deyang City Government of China(2014ZZ051);Postdoctoral Start Fund of Shenyang Ligong University(10500010006)
Corresponding Authors:  XU Daokui     E-mail:  dkxu@imr.ac.cn

Cite this article: 

JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 463-468.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.050     OR     https://www.jcscp.org/EN/Y2019/V39/I6/463

Fig.1  SEM image of the microstructure of Mg-6Zn-1.2Y-0.8Nd alloy (a) and EDS result of W-phase in the alloy (b)
Fig.2  Polarization curves of Mg-6Zn-1.2Y-0.8Nd alloy after pre-immersion in Hank's solution for 0~48 h (a), and enlarged detail of the area labeled in Fig.2a (b)
Sample conditionEcorr / VSCEIcorr / μA·cm-2
As-received1.707±0.00314.24±3.85
Pre-immersed for 2 h1.553±0.0022.91±0.36
Pre-immersed for 4 h1.542±0.0031.98±0.25
Pre-immersed for 8 h1.544±0.0022.04±0.35
Pre-immersed for 24 h1.534±0.0022.30±0.20
Pre-immersed for 48 h1.529±0.0033.64±0.55
Table 1  Fitting results of polarization curves of Mg-6Zn-1.2Y-0.8Nd alloy before and after pre-immersion treatment in Hank's solution for different time
Fig.3  Surface corrosion morphologies and 3D images of Mg-6Zn-1.2Y-0.8Nd alloy after pre-immersion in Hank's solution for 0 h (a), 2 h (b), 4 h (c), 8 h (d), 24 h (e) and 48 h (f)
Fig.4  SEM images of the cross sections of Mg-6Zn-1.2Y-0.8Nd alloy pre-immersed in Hank's solution for 4 h (a) and 48 h (b), and EDS result of the corrosion film (c)
[1] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R, et al. Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys [J]. Mater. Des., 2014, 53: 283
[2] Zhang E L, Yin D S, Xu L P, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application [J]. Mater. Sci. Eng., 2009, C29: 987
[3] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[4] Huang J J, Ren Y B, Zhang B C, et al. Study on biocompatility of magnesium and its alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1102
[4] (黄晶晶, 任伊宾, 张炳春等. 镁及镁合金的生物相容性研究 [J]. 稀有金属材料与工程,. 2007, 36: 1102)
[5] Kannan M B, Raman R K S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid [J]. Biomaterials, 2008, 29: 2306
[6] Zhang X N, Zuo M C, Zhang S X, et al. Advances in clinical research of biodegradable stents [J]. Acta Metall. Sin., 2017, 53: 1215
[6] (张小农, 左敏超, 张绍翔等. 医用可降解血管支架临床研究进展 [J]. 金属学报, 2017, 53: 1215)
[7] Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
[7] (郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227)
[8] Xi T F, Wei L N, Liu J, et al. Research progress in bioresorbable magnesium scaffolds [J]. Acta Metall. Sin., 2017, 53: 1153
[8] (奚廷斐, 魏丽娜, 刘婧等. 镁合金全降解血管支架研究进展 [J]. 金属学报, 2017, 53: 1153)
[9] Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications [J]. Acta Metall. Sin., 2017, 53: 1168
[9] (袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报, 2017, 53: 1168)
[10] Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10: B3
[11] Zeng R C, Cui L Y, Jiang K, et al. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (L- lactic acid) composite coating on Mg- 1Li-1Ca alloy for orthopedic implants [J]. ACS Appl. Mater. Interfaces., 2016, 8: 10014
[12] Wang B J, Xu D K, Wang S D, et al. Fatigue crack initiation of magnesium recent progress in the research about fatigue crack initiation of Mg alloys under elastic stress amplitudes: A review [J]. Front. Mech. Eng., 2019, 14: 113
[13] Qin H, Zhao Y C, An Z Q, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy [J]. Biomaterials., 2015, 53: 211
[14] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue., 2019, 120: 46
[15] Wang H X, Guan S K, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process [J]. Acta Biomater., 2010, 6: 1743
[16] Zhao X, Shi L L, Xu J. Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior [J]. Mater. Sci. Eng., 2013, C33: 3627
[17] Wang B J, Luan J Y, Xu D K, et al. Research progress on the corrosion behavior of magnesium-lithium-based alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.)., 2019, 32: 1
[18] Wang S D, Xu D K, Chen X B, et al. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2015, 92: 228
[19] Xu D K, Han E-H. Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg-Li alloy [J]. Scr. Mater., 2014, 71: 21
[20] Ju Y L, Kim D H, Lim H K, et al. Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys [J]. Mater. Sci. Eng., 2007, A449-451: 987
[21] Wang J, Liu R D, Dong X G, et al. Microstructure and mechanical properties of Mg-Zn-Y-Nd-Zr alloys [J]. J. Rare Earths., 2013, 31: 616
[22] Xu X Y, Chen X H, Du W W, et al. Effect of Nd on microstructure and mechanical properties of as-extruded Mg-Y-Zr-Nd alloy [J]. J. Mater. Sci. Technol., 2017, 339: 926
[23] Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application [J]. ACS. Appl. Mater. Interfaces., 2016, 8: 17842
[24] Liu J, Wang P, Chu C C, et al. A novel biodegradable and biologically functional arginine-based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy: Enhancement in corrosion resistance and biocompatibility [J]. J. Mater. Chem., 2017, B5B: 1787
[25] Zhang X B, Ma Q L, Ba Z X, et al. Microstructure and corrosion behaviour in simulated body fluid of solution treated Mg-Nd-Gd-Sr-Zn-Zr alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1156
[25] (章晓波, 马青龙, 巴志新等. 固溶处理态Mg-Nd-Gd-Sr-Zn-Zr镁合金的显微组织及其在模拟体液中的腐蚀行为 [J]. 稀有金属材料与工程, 2017, 46: 1156)
[26] Zhang X B, Mao L, Yuan G Y, et al. Performances of biodegradable Mg-Nd-Zn-Zr magnesium alloy for cardiovascular stent [J]. Rare Met. Mater. Eng., 2013, 42(6): 1300
[26] (章晓波, 毛琳, 袁广银等. 心血管支架用Mg-Nd-Zn-Zr生物可降解镁合金的性能研究 [J]. 稀有金属材料与工程, 2013, 42(6): 1300)
[27] Zhang X B, Yuan G Y, Wang Z Z. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy [J]. Mater. Sci. Technol., 2013, 29(1): 111
[28] Kang Y Y, Du B N, Li Y M, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 6
[29] Chen T J, Zhang D H, Wang W, et al. Effects of Y content on microstructures and mechanical properties of as-cast Mg-Zn-Nd alloys [J]. China Foundry., 2015, 12: 339.
[30] Xu D K, Han E-H. Effects of icosahedral phase formation on the microstructure and mechanical improvement of Mg alloys: A review [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 364
[31] Wang B J, Xu D K, Dong J H, et al. Effect of corrosion production films on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt.%) alloy in Hank's solution [J]. J. Mater. Sci. Technol., 2018, 34: 1756
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[5] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[6] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[8] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[12] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[13] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[14] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[15] Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
No Suggested Reading articles found!