Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 131-138    DOI: 10.11902/1005.4537.2020.005
Current Issue | Archive | Adv Search |
Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc
WANG Yingjun1, LIU Honglei1, WANG Guojun1, DONG Kaihui2, SONG Yingwei2(), NI Dingrui2
1 Northeast Light Alloy CO. , LTD, Harbin 150060, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(3432KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel anodic process was developed for a RE-containing 7000 series Al-alloy Al-Zn-Mg-Cu-Sc. Further, sealing-pore post treatments were carried out to improve the compactness of the anodic film. The results indicate that the precipitated Sc-containing phases on the surface of 7000 series Al-alloy act as micocathodes to accelerate the corrosion of Al matrix, which has a negative effect on the uniformity of the anodic film. In order to solve this trouble, the formula and electric parameters of the electrolyte bath were adjusted, hence, a uniform and smooth anodic film is formed on the surface of the Al-alloy. Meantime, three sealing-pore processes with fluozirconate, cerate and boiling water respectively were carried out to improve the compactness of the anodic film. It is found that after boiling water sealing-pore, the anodic film exhibits a sliver like uniform surface without defects and microcracks, among others, that film presents the best corrosion resistance, and the film can keep intact after salt spray test for 336 h, which can satisfy the requirement for the actual applications.

Key words:  RE aluminum alloy      precipitation phase      anodic film      sealing-pore treatment      corrosion      resistance     
Received:  09 January 2020     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2016YFB0301105)
Corresponding Authors:  SONG Yingwei     E-mail:  ywsong@imr.ac.cn

Cite this article: 

WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 131-138.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.005     OR     https://www.jcscp.org/EN/Y2020/V40/I2/131

Fig.1  SEM surface morphologies of non-etched (a) and etched (b) Sc-containing 7000 series Al alloy
Fig.2  Surface morphology of 7000 series Al alloy substrate after alkaline etching
Fig.3  Effects of process parameters on the impedance value of the anodic film: (a) concentration of H2SO4, (b) concentration of additive, (c) voltage, (d) time, (e) temperature
Fig.4  EIS plots of Al substrate and anodic film in 3.5% NaCl solution
Fig.5  Optical photos of Al alloy substrate before (a) and after (b) immersion in 3.5%NaCl solution for 20 h, and formed anodic film (c)
Fig.6  EIS plots of sealing treated anodic film in 3.5%NaCl solution
Fig. 7  Equalvent circuit of EIS plots of anodic film with different sealing treatments
Sealing-pore methodRs / Ω·cm2Qp / Ω-1·cm-2·s-nnpRp / kΩ·cm2Qb / Ω-1·cm-2·s-nnbRb / kΩ·cm2
Boiling water25.31.78×10-70.7617.31.08×10-60.948190
Fluozirconate32.71.34×10-70.793.13.42×10-60.83217.9
Cerate28.81.41×10-70.782.25.74×10-60.811106
Table 1  Fitting results of EIS plots
Fig.8  Surface (a) and cross-section (b) morphologies of the anodic film with sealing treatment in boiling water
Fig.9  Polarization curves of Al substrate, untreated and boiling water sealed anodic films in 3.5%NaCl solution
SampleEcorr / VSCEIcorr / μA·cm-2
Al substrate-0.8710.62
Anodic film-0.719.96×10-2
Sealed-pore anodic film-0.611.09×10-3
Table 2  Fitting results of polarization curves
Fig.10  Optical photos of anodic film untreated (a) and treated by sealing (b) and sealing+336 h salt spray test (c)
[1] Wang J, Huang S, Huang H J, et al. Effect of micro-groove on microstructure and performance of MAO ceramic coating fabricated on the surface of aluminum alloy [J]. J. Alloy. Compd., 2019, 777: 94
[2] Leng L, Zhang Z J, Duan Q Q, et al. Improving the fatigue strength of 7075 alloy through aging [J]. Mater. Sci. Eng., 2018, A738: 24
[3] Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging [J]. Mater. Sci. Eng., 2008, A485: 468
[4] Yang Q X, Ren S S, Zhao Q Q, et al. Surface grafting modification and wetting behavior of anodic aluminum oxide film [J]. Surf. Technol., 2017, 46(5): 184
(杨清香, 任爽爽, 赵倩倩, 等. 阳极氧化铝膜的表面接枝改性及润湿行为 [J]. 表面技术, 2017, 46(5): 184)
[5] Shih H H, Tzou S L. Study of anodic oxidation of aluminum in mixed acid using a pulsed current [J]. Surf. Coat. Technol., 2000, 124: 278
[6] Zhang J S, Zhao X H, Zuo Y, et al. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath [J]. Surf. Coat. Technol., 2008, 202: 3149
[7] Dai Y F, Shen S T, Lu J Q, et al. 2024 aluminum alloy anodic oxidation in mixed acid [J]. Surf. Technol., 2018, 47(1): 198
(戴一帆, 沈士泰, 卢洁琴等. 2024铝合金混合酸阳极氧化 [J]. 表面技术, 2018, 47(1): 198)
[8] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
[9] Rokhlin L L, Dobatkina T V, Bochvar N R, et al. Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system [J]. J. Alloy. Compd., 2004, 367: 10
[10] Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
[11] Zhu Z F. Surface Treatment of Aluminum [M]. Changsha: Central South University Press, 2010
(朱祖芳. 铝材表面处理 [M]. 长沙: 中南大学出版社, 2010)
[12] Liu D Q, Ke L M, Xu W P, et al. Intergranular corrosion behavior of friction-stir welding joint for 20 mm thick plate of 7075 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2017, 37(3): 293
(刘德强, 柯黎明, 徐卫平等. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37(3): 293)
[13] Zhang R F, Li J F, Li Q, et al. Analysing the degree of sensitisation in 5xxx series aluminium alloys using artificial neural networks: A tool for alloy design [J]. Corros. Sci., 2019, 150: 268
[14] Zhu R Z. Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 1989
(朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989)
[15] Song Y W, Shan D Y, Han E-H. Pitting corrosion of a rare earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
[16] Zhuang J J, Song R G, Xiang N, et al. Corrosion behavior of micro-arc oxidation coatings formed on 6063 aluminum alloy [J]. Corros. Sci. Prot. Technol., 2017, 29: 492
(庄俊杰, 宋仁国, 项南等. 6063铝合金微弧氧化膜层的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 492)
[17] Tian L P, Zuo Y, Zhao J M, et al. Evaluation of sealing methods on corrosion behavior of LD7 aluminum alloy anodic oxide films in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 327
(田连朋, 左禹, 赵景茂等. LD7铝合金阳极氧化膜的不同封闭方法耐蚀性评价 [J]. 中国腐蚀与防护学报, 2005, 25: 327)
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!