Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (1): 25-30    DOI: 10.11902/1005.4537.2018.185
Current Issue | Archive | Adv Search |
Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism
WANG Le1,2,YI Danqing1,2,LIU Huiqun2(),JIANG Long3,FENG Chun3
1. Light Alloy Research Institute, Central South University, Changsha 40083, China
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
3. Tubular Goods Research Institute of CNPC, Xi'an 710065, China
Download:  HTML  PDF(3129KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Ru addition on the corrosion behavior of Ti-6Al-4V (TC4) alloy in HCl solution were studied by means of electrochemical method, energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion products and concentration variation of elements along surface depth were analyzed. The results showed that, the addition of Ru increased the corrosion potential of TC4 alloy in 10% (mass fraction) HCl solution from -0.585 V to -0.529 V, and the corrosion current density decreased from 6.193×10-5 A/cm2 to 2.750×10-5 A/cm2. The passive current densities changed a little, from 2.335×10-5 A/cm2 to 2.608×10-5 A/cm2. The addition of Ru reduced the corrosion rate of TC4 alloy in 15% (mass fraction) HCl solution from 1.48 mm/a to 0.94 mm/a as well. According to XPS results, the main corrosion products of TC4 alloy after corrosion in HCl solution were TiO2, Al2O3 and V2O5. During the corrosion, Ru played an effective role in cathodic modification, promoted the deposition of TiO2 passive film on the surface and thickened the passive film by one time. Therefore, Ru increased the denseness of the passive film, thereby improved the corrosion resistance of TC4 alloy effectively.

Key words:  Ti-6Al-4V alloy      Ru      electrochemical      XPS      corrosion resistance mechanism     
Received:  24 December 2018     
ZTFLH:  TG146.2  
Fund: National Science and Technology Major Project(2016ZX05020-002)
Corresponding Authors:  Huiqun LIU     E-mail:  liuhuiqun@csu.edu.cn

Cite this article: 

WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 25-30.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.185     OR     https://www.jcscp.org/EN/Y2020/V40/I1/25

AlloyAlVRuTi
TC45.923.83---Bal.
TC4-Ru5.893.870.093Bal.
Table 1  Chemical compositions of TC4 and TC4-Ru alloys (mass fraction / %)
Fig.1  Open potentials of TC4 and TC4-Ru alloys in 10%HCl solution
Fig.2  Potentiodynamic polarization curves of TC4 and TC4-Ru alloys in 10%HCl solution
AlloyEcorrVIcorrA·cm-2IpassA·cm-2bcmV·dec-1
TC4-0.585±0.017(6.193±0.054)×10-5(2.335±0.010)×10-5-108±23
TC4-Ru-0.529±0.021(2.750±0.067)×10-5(2.608±0.006)×10-5-256±11
Table 2  Anodic polarization parameters of TC4 and TC4-Ru alloys in 10%HCl solution
Fig.3  Measured corrosion rates of TC4 and TC4-Ru alloys in 15%HCl solution at 37 ℃
Fig.4  Surface morphologies of TC4 (a) and TC4-Ru (b) alloys after immersion in 15%HCl solution at 37 ℃ for 3 h
Fig.5  SEM image of TC4-Ru alloy after immersion in 15%HCl solution at 37 ℃ for 10 d
PointAlVRu
17.563.241.87
27.723.022.10
38.112.762.00
Table.3  EDS analysis results of the points marked in Fig.5 (mass fraction / %)
Fig.6  XPS spectra of Ti 2p (a, b), Al 2p (c, d), V 2p (e, f) and Ru 3d (g) on the surfaces of TC4 (a, c, e) and TC4-Ru (b, d, f, g) alloys after immersion in 15%HCl solution at 37 ℃ for 10 d
Fig.7  XPS spectra of Ti 2p for TC4 (a) and TC4-Ru (b) alloys after immersion in 15%HCl solution at 37 ℃ for 10 d and then sputtering for 0, 70, 140 and 210 s
[1] Hu Q X. Titanium application and its prospects [J]. Titanium Ind. Proc., 2003, 20(4): 11
[1] (胡清熊. 钛的应用及前景展望 [J]. 钛工业进展, 2003, 20(4): 11)
[2] Huang B Y, Li C G, Shi L K. China Materials Engineering Dictionary. Nonferrous Metal Materials Engineering [M]. Beijing: Chemical Industry Press Co., Ltd., 2006
[2] (黄伯云, 李成功, 石立开. 中国材料工程大典?有色金属材料工程 [M]. 北京: 化学工业出版社, 2006)
[3] Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
[3] (穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420)
[4] Stipani?ev M, Turcu F, Esnault L, et al. Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment [J]. Electrochim. Acta, 2013, 113: 390
[5] Xin S S, Li M C. Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater [J]. Corros. Sci., 2014, 81: 96
[6] Hoseinieh S M, Homborg A M, Shahrabi T, et al. A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise [J]. Electrochim. Acta, 2016, 217: 226
[7] Louren?o M I, Netto T A, Plácido J C R. Aluminum drill pipes: Material and design developments [A]. ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering [C]. American Society of Mechanical Engineers, Estoril, 2008: 265
[8] Gelfgat M Y, Geise J, Paff G. Stratigrafy drilling in deep water with aluminum drill pipes application [A]. SPE/IADC Drilling Conference [C]. Amsterdam, 1997
[9] Liao M S, Yang B L. The opportunity and challenge to new trend in current world petroleum equipment [J]. Oil Field Equip., 2007, 36(9): 1
[9] (廖谟圣, 杨本灵. 世界石油设备发展的新特点及机遇与挑战 [J]. 石油矿场机械, 2007, 36(9): 1)
[10] Liu W Y, Zhu Y K, Lin Y H, et al. Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy [J]. Mater. Rev., 2013, 27(18): 108
[10] (刘婉颖, 朱毅科, 林元华等. 热处理对TC4钛合金显微组织和力学性能的影响 [J]. 材料导报, 2013, 27(18): 108)
[11] Schutz R W. 2003 F.N. speller award lecture: Platinum group metal additions to titanium: A highly effective strategy for enhancing corrosion resistance [J]. Corrosion, 2003, 59: 1043
[12] Schutz R W, Porter R L, Horrigan J M. Qualifications of Ti-6%Al-4%V-Ru alloy production tubulars for aggressive fluoride-containing mobile bay well service [J]. Corrosion, 2000, 56: 1170
[13] Ueda M, Kudo T, Kitayama S, et al. Corrosion behavior of titanium alloys in a sulfur-containing H2S-CO2-Cl- environment [J]. Corrosion, 1992, 48: 79
[14] Atapour M, Pilchak A, Frankel G S, et al. Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures [J]. Corrosion, 2010, 66: 065004
[15] Yu S Y. Effects of Nb and Zr alloying additions on the activation behavior of Ti in hydrochloric acid [J]. J. Electrochem. Soc., 1999, 146: 4429
[16] Yu S Y, Scully J R. Corrosion and passivity of Ti-13%Nb-13%Zr in comparison to other biomedical implant alloys [J]. Corrosion, 1997, 53: 965
[17] Levy M. Anodic behavior of titanium and commercial alloys in sulfuric acid [J]. Corrosion, 1967, 23: 236
[18] Cramer S D, B S C eds Jr. Corrosion: Fundamental Testing and Protection [M]. ASM Handbook 13A. Materials Park: ASM International, 2003
[19] Chen J R, Tsai W T. In situ corrosion monitoring of Ti-6Al-4V alloy in H2SO4/HCl mixed solution using electrochemical AFM [J]. Electrochim. Acta, 2011, 56: 1746
[20] Blackwood D J, Peter L M, Williams D E. Stability and open circuit breakdown of the passive oxide film on titanium [J]. Electrochim. Acta, 1988, 33: 1143
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[10] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[11] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[14] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[15] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
No Suggested Reading articles found!