Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (5): 439-445    DOI: 10.11902/1005.4537.2019.162
Current Issue | Archive | Adv Search |
Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load
YU Mei(),WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan
School of Materials Science and Engineering, Beihang University, Beijing 100083, China
Download:  HTML  PDF(8187KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of tensile load on pitting corrosion behavior of 2297 Al-Li alloy in 3.5% (mass fraction) NaCl solution was studied by short time immersion test and in-situ electrochemical test under different loading conditions within the range of 0%, 30%, 60%, 90% and 103% of the σ0.2 of the alloy, while the microstructure of the initial and plastically deformed 2297 Al-Li alloy was characterized. After plastic deformation, AlCuMnFe intermetallic particles of 2297 Al-Li alloy become fine and uniformly dispersed, and dislocation walls are formed inside the grains due to dislocation accumulation. Pitting corrosion mainly occurs around the AlCuMnFe intermetallic particles, and crystal defects such as crystal plane slip and dislocation entanglement also become corrosion nucleation sites. The increase of the applied load within the range of 0%σ0.2~103%σ0.2 leads to negative shift of the corrosion potential, increase of the corrosion current density and the charge transfer resistance, which will become more obvious when the stress level reaches the plastic stress range.

Key words:  Al-Li alloy      corrosion      stress load      microstructure      electrochemistry     
Received:  20 September 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51671013)
Corresponding Authors:  Mei YU     E-mail:  yumei@buaa.edu.cn

Cite this article: 

YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 439-445.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.162     OR     https://www.jcscp.org/EN/Y2019/V39/I5/439

Fig.1  L-T oriented plate sample used in tensile test
Fig.2  Schematic diagram of in-situ electrochemical measuring device under external stress (1- tensile tester chuck; 2-silicon carbide ceramic rod; 3-tensile specimen; 4-nylon screw; 5-Luggin capillary; 6-injection port; 7-platinum electrode; 8-outlet)
Fig.3  TEM images of 2297-T87 Al-Li alloy at the orientation of [110]Al: (a, c, e) the original sample; (b, d, f) the sample deformed under 103%σ0.2 plastic stress; (g) the EDS result of point 1 in Fig.3a
Fig.4  Metallographic micrographs of 2297-T87 Al-Li alloy after immersion for 2 h under different stress loads: (a) 0%σ0.2, (b) 30%σ0.2, (c) 60%σ0.2, (d) 90%σ0.2, (e) 103%σ0.2
Fig.5  BSE-SEM micrographs of 2297-T87 Al-Li alloy after immersion for 2 h under different stress loads: (a) 0%σ0.2, (b) 30%σ0.2, (c) 60%σ0.2, (d) 90%σ0.2, (e) 103%σ0.2, (f) image of point A in Fig.4e
Fig.6  EDS area scannings of various elements in Fig.5a
Fig.7  Dynamic potential polarization curves of 2297-T87 Al-Li alloy in 3.5%NaCl solution under different stress loads
StressloadEcorrmVSCEIcorr10-7 A·cm-2bamVSCE / dec-bcmVSCE / dec
0%σ0.2-7662.432130132
30%σ0.2-7712.589136124
60%σ0.2-7742.755140120
90%σ0.2-7803.357144119
103%σ0.2-7834.683146113
Table 1  Electrochemical parameters of dynamic potential polarization curves
Fig.8  Nyquist (a) and Bode (b) plots of 2297-T87 Al-Li alloy after immersion in 3.5%NaCl solution for 1 h under different stress loads
Fig.9  Equivalent circuit diagram for fitting EIS
Stress loadRs / Ω·cm2Qh / Yh·Ω-1·cm-2·snnfRh / Ω·cm2Qdl / Ydl·Ω-1·cm-2·snndlRct / Ω·cm2
0%σ0.23.021.67×10-58.76×10-11.48×1048.76×10-51.0002.35×104
30%σ0.24.4871.86×10-58.17×10-11.37×1049.03×10-50.9912.05×104
60%σ0.23.521.68×10-58.80×10-11.41×1049.29×10-51.0001.85×104
90%σ0.23.171.51×10-58.71×10-11.52×1049.77×10-51.0001.56×104
103%σ0.22.931.78×10-58.61×10-11.27×1041.30×10-41.0001.23×104
Table 2  Fitting values of various electrochemical parameters from EIS data of 2297-T87 Al-Li alloy after immersion in 3.5%NaCl solution for 1 h under different stress loads
Fig.10  Corrosion mechanisms of 2297-T87 Al-Li alloy in 3.5%NaCl solution under the conditions of no stress (a), elastic stress (b) and plastic stress (c)
1 YangS J, LuJ, FengZ H, et al. The history of Al-Li alloys and the research development in China [J]. Mater. Rev., 2014, 28(Suppl. 2: 430
1 杨守杰, 卢健, 冯朝辉等. 铝锂合金历史回顾与在中国的研究发展 [J]. 材料导报, 2014, 28(增刊2): 430
2 YinD F, ZhengZ Q. History and current status of aluminum-lithium alloys research and development [J]. Mater. Rev., 2003, 17(2): 18
2 尹登峰, 郑子樵. 铝锂合金研究开发的历史与现状 [J]. 材料导报, 2003, 17(2): 18
3 RiojaR J, LiuJ. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
4 MaY, ZhouX, LiaoY, et al. Localised corrosion in AA2099-T83 aluminium-lithium alloy: The role of grain orientation [J]. Corros. Sci., 2016, 107: 41
5 DonatusU, TeradaM, OspinaC R, et al. On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour [J]. Corros. Sci., 2018, 131: 300
6 GuérinM, AlexisJ, AndrieuE, et al. Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy [J]. Corros. Sci., 2016, 102: 291
7 LiuJ H, ZhaoK, YuM, et al. Effect of surface abrasion on pitting corrosion of Al-Li alloy [J]. Corros. Sci., 2018, 138: 75
8 YouW, HuangD S, GuoY L. Effects of aging treatment on corrosion behavior of 2297 aluminum alloy [J]. Aluminum Fabrication, 2016, (1): 4
8 游文, 黄德胜, 呙永林. 时效工艺对2297合金腐蚀行为的影响 [J]. 铝加工, 2016, (1): 4
9 Гутман З М, translated by JinS. Metal Mechanics Chemistry and Corrosion Protection [M]. Beijing: Science Press, 1989
9 古特曼著, 金石译. 金属力学化学与腐蚀防护 [M]. 北京: 科学出版社, 1989
10 LiH Z, ZhangX M, ChenM A, et al. Effect of pre-deformation on the stress corrosion cracking susceptibility of aluminum alloy 2519 [J]. Rare Met., 2007, 26: 385
11 McMahonM E, SteinerP J, LassA B, et al. The effect of loading orientation on the stress corrosion cracking of Al-Mg alloys [J]. Corros. Sci., 2017, 73: 713
12 SuJ, ZhangZ, ShiY, et al. The effect of applied tensile stress on the exfoliation corrosion of 7075-T6 alloy [J]. Mater. Corros., 2006, 57: 729
13 RaoS X, ZhuL Q, LiD, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 228
13 饶思贤, 朱立群, 李荻等. 力学化学效应对LY12CZ铝合金点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2007, 27: 228
14 LiH Y, KangW, LuX C. Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al-Li alloy [J]. J. Alloy. Compd., 2015, 640: 210
15 GrilliR, BakerM A, CastleJ E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution [J]. Corros. Sci., 2010, 52: 2855
16 TianW M, LiS M, ChenX, et al. Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys [J]. Corros. Sci., 2016, 107: 211
17 MoretoJ A, MarinoC E B, FilhoW W B, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication [J]. Corros. Sci., 2014, 84: 30
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!