Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 133-139    DOI: 10.11902/1005.4537.2017.010
Current Issue | Archive | Adv Search |
Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers
Bei QIAN1(), Chengbao LIU2, Zuwei SONG1, Junfeng REN1
1 College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
2 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
Download:  HTML  PDF(3185KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-containers were synthesized via layer by layer (LbL) self-assembly technique with SiO2 as core and alternative layers of chitosan and polyaspartic acid inhibitor as shell. Then nano-containers modified epoxy coatings were prepared and applied on carbon steel Q235. The nano-containers were characterized by means of Malvern laser particle size analyzer, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). In addition, the electrochemical behavior of epoxy coatings/Q235 systems with and without nano-containers in 3.5% (mass fraction) NaCl solution were investigated through electrochemical impendence spectroscopy (EIS). Results indicated that the corrosion resistance of epoxy coatings had been greatly increased by the incorporating nano-containers, which can effectively reduce the diffusion of water in coating matrix and enhance the coating impedance for corrosion reaction. The impedance value of the modified epoxy coating may be maintained by above 105 Ω·cm2 even after 120 h immersion, revealing the enhanced anticorrosion performance.

Key words:  nanocontainer      epoxy coating      inhibitor      anticorrosion performance      Q235 mild steel     
Received:  16 January 2017     
Fund: Supported by Natural Science Foundation of Shandong Province (ZR2017BD038) and Research Foundation for Distinguished Scholars of Qingdao Agricultural University (6631115017)

Cite this article: 

Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 133-139.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.010     OR     https://www.jcscp.org/EN/Y2018/V38/I2/133

Fig.1  Zeta-potential of nanocontainers
Fig.2  FT-IR spectra of nanocontainers
Fig.3  SEM images of nanocontainers (a) and the magnified image of the square area in Fig.3a (b)
Fig.4  Optical photographies of S0 (a1~a5), S1 (b1~b5) and S2 (c1~c5) systems after immersion in 3.5%NaCl solution for 1 h (a1, b1, c1), 5 h (a2, b2, c2), 24 h (a3, b3, c3), 72 h (a4, b4, c4) and 120 h (a5, b5, c5)
Fig.5  Impedance module (a, d), phase angle (b, e) and Nyquist (c, f) plots of scratched S2 (a~c) and S0 (d~f) coating systems after immersion in 3.5%NaCl solution for 1~5 h
Fig.6  Equivalent circuit of scratched coating systems after immersion in 3.5%NaCl solution for 1~5 h
Fig.7  Impedance module (a, d), phase angle (b, e) and Nyquist (c, f) plots of scratched S2 (a~c) and S0 (d~f) coating systems after immersion in 3.5%NaCl solution for 24~120 h
Fig.8  Equivalent circuits of scratched S0 (a) and S2 (b) coating systems after immersion in 3.5%NaCl solution for 24~120 h
Table 1  Impedance parameters obtained by ZSimpWin simulation for scratched S0 and S2 coatings in 3.5%NaCl solution
[1] Zhang L, Li B S, Zhang W.Anticorrosion performance of epoxy coating containing polyaniline modified by montmorillonite in marine environment[J]. Corros. Prot., 2016, 37: 215(张磊, 李宝松, 张文. 海洋环境蒙脱土改性聚苯胺环氧涂层的防腐蚀性能[J]. 腐蚀与防护, 2016, 37: 215)
[2] Olad A, Naseri B.Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite[J]. Prog. Org. Coat., 2010, 67: 233
[3] Ge C Y, Yang X G, Hou B R.Synthesis of polyaniline nanofiber and anticorrosion property of polyaniline-epoxy composite coating for Q235 steel[J]. J. Coat. Technol. Res., 2012, 9(1): 59
[4] Liu Y W.Corrosion resistance of anticorrosive coatings of epoxy resin modified by nano SiO2-rare elements[J]. Corros. Prot., 2015, 36: 738(刘元伟. 纳米SiO2-稀土元素复合改性环氧树脂防腐蚀涂料的耐蚀性[J]. 腐蚀与防护, 2015, 36: 738)
[5] Li G L.Epoxy Resin and Epoxy Coating [M]. Beijing: Chemical Industry Press, 2003(李桂林. 环氧树脂与环氧涂料 [M]. 北京: 化学工业出版社, 2003)
[6] Song J J, Liu C W, Chen H J, et al.Study on modification of anti-corrosive epoxy powder coating[J]. Thermosetting Resin, 2007, 22(4): 24(宋加金, 刘长维, 陈红军等. 耐腐蚀环氧粉末涂料的改性研究[J]. 热固性树脂, 2007, 22(4): 24)
[7] Liu G Z, Yang Z S, Zhang Y, et al.Corrosion inhibition performance of imidazoline amide for carbon steel in HCl/NH4Cl-H2O and H2S/NH4HS-H2O solution[J]. Corros. Prot., 2016, 37: 189(刘公召, 杨振声, 张艳等. 咪唑啉酰胺在HCl/NH4Cl-H2O和H2S/NH4HS-H2O体系中对碳钢的缓蚀性能[J]. 腐蚀与防护, 2016, 37: 189)
[8] Xiang Y G, Cui Y S, Qiao K Q.Corrosion inhibition of A3 steel by lauryl dihydroxyethyl amine oxide in 0.5 molL-1 H2SO4 solution[J]. Corros. Prot., 2016, 37: 30(向云刚, 崔益顺, 谯康全. 十二烷基二羟乙基氧化胺在0.5 molL-1 H2SO4中对A3钢的缓蚀性能[J]. 腐蚀与防护, 2016, 37: 30)
[9] Yang P P, Gai S L, Lin J.Functionalized mesoporous silica materials for controlled drug delivery[J]. Chem. Soc. Rev., 2012, 41: 3679
[10] Sun J T, Hong C Y, Pan C Y.Fabrication of PDEAEMA-Coated mesoporous silica nanoparticles and pH-responsive controlled release[J]. J. Phys. Chem., 2010, 114C: 12481
[11] Slowing I I, Trewyn B G, Giri S, et al.Mesoporous silica nanoparticles for drug delivery and biosensing applications[J]. Adv. Funct. Mater., 2007, 17: 1225
[12] Haase M F, Grigoriev D O, M?hwald H, et al.Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings[J]. Adv. Mater., 2012, 24: 2429
[13] Borisova D, M?hwald H, Shchukin D G.Mesoporous silica nanoparticles for active corrosion protection[J]. ACS Nano, 2011,5: 1939
[14] Saremi M, Yeganeh M.Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings[J]. Corros. Sci., 2014, 86: 159
[15] Klitzing R V.Internal structure of polyelectrolyte multilayer assemblies[J]. Phys. Chem. Chem. Phys., 2006, 8: 5012
[16] Iler R K.Multilayers of colloidal particles[J]. J. Colloid Interface Sci., 1966, 21: 569
[17] Gittins D I, Caruso F.Multilayered polymer nanocapsules derived from gold nanoparticle templates[J]. Adv. Mater., 2000, 12: 1947
[18] Antunes J C, Pereira C L, Molinos M, et al.Layer-by-layer self-assembly of chitosan and poly(γ-glutamic acid) into polyelectrolyte complexes[J]. Biomacromolecules, 2011, 12: 4183
[19] Liu Y H, Li C M, Gu N.The study of the performance of environmentally friendly corrosion inhibitor-polyaspartic acid on carbon steel in tap water[J]. Sichuan Environ., 2013, 32(4): 11(刘英华, 李春梅, 谷宁. 环境友好缓蚀剂聚天冬氨酸在自来水中对碳钢的缓蚀性能研究[J]. 四川环境, 2013, 32(4): 11)
[20] Xu Q J, Zhu L Y, Cao W M, et al.Inhibition action and adsorption behavior of environment-friendly inhibitor poly-aspartate on copper[J]. Acta Phys.-Chim. Sin., 2008, 24: 1724(徐群杰, 朱律均, 曹为民等. 绿色缓蚀剂聚天冬氨酸对铜的缓蚀性能与吸附行为[J]. 物理化学学报, 2008, 24: 1724)
[21] Qian B, Wang J, Zheng M, et al.Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4[J]. Corros. Sci., 2013, 75: 184
[22] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[23] Xie D M, Tong S P, Cao J L.Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013(谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[9] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[10] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[12] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[14] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[15] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
No Suggested Reading articles found!