Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 398-406    DOI: 10.11902/1005.4537.2015.216
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Q235 Steel in Simulated Underground Water and Highly Compacted Bentonite Environment of Beishan Area
Min ZHENG1,2,Yanliang HUANG1(),Du XIFANG3,Dongzhu LU1,Jie ZHANG1,Xiutong WANG1,Juan WEN4,Yuhong LI4,Yuemiao LIU5
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Tokyo Institute of Technology, Tokyo 1528552, Japan
4. The School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
5. Beijing Research Institute of Uranium Geology, Beijing 100029, China
Download:  HTML  PDF(1766KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Q235 steel in an artificial solution to simulate the underground water and a highly compacted bentonite with different water contents to simulate the deep geological disposal environment at Beishan area, as a candidate site for nuclear waste storage, was respectively investigated by open circuit current measurement, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The results indicated that the simulated underground water is more aggressive than the highly compacted bentonite with different water contents, which presents a high corrosion rate of Q235 steel with the maximum at the temperature between 70 and 90 ℃. While, the corrosion rate of Q235 in highly compacted bentonite with 20% water content shows the highest corrosion rate among others, whilst the 20% water content can be conformed as the border of saturated and unsaturated water status for the highly compacted bentonite. Moreover, the study showed that the oxygen diffusion is the limitation for cathodic reaction, so that the further corrosion in the highly compacted benonite with high water contents, while conductivity is the limitation in those with low water contents.

Key words:  Q235 steel      simulated underground water solution      deep geological disposal environment      corrosion     

Cite this article: 

Min ZHENG,Yanliang HUANG,Du XIFANG,Dongzhu LU,Jie ZHANG,Xiutong WANG,Juan WEN,Yuhong LI,Yuemiao LIU. Corrosion Behavior of Q235 Steel in Simulated Underground Water and Highly Compacted Bentonite Environment of Beishan Area. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 398-406.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.216     OR     https://www.jcscp.org/EN/Y2016/V36/I5/398

Fig.1  Schematic diagram of the apparatus for highly compacted bentonite preparation and electrochemical measurement
Fig.2  OCP of Q235 steel in simulated underground water at different temperatures
Fig.3  OCP variations of Q235 steel with temperature in highly compacted bentonite with 30% (saturated) (a) and 25% (b) water
Fig.4  Average OCP variations of Q235 steel with gradient temperature increase in highly compacted bentonite with different contents of water
Fig.5  Nyquist (a) and Bode (b) plots of Q235 steel in simulated underground water solution at different temperatures
Fig.6  Equivalent circuits of Q235 steel in simulated underground water solution at 5~25 ℃ and 60~98 ℃ (a) and 45 ℃ (b)
Temperature / ℃ Rs / Ωcm2 Qb-Y0 / Fcm-2 Qb-n Rb / Ωcm2 Qdl-Y0 / Fcm-2 Qdl-n Rct / Ωcm2 W-Y0 / Ω-1cm-2
5 17.11 1.502×10-7 0.982 10.94 2.687×10-4 0.7798 4130 0.00869
25 11.35 1.433×10-7 0.9884 8.363 3.341×10-4 0.7758 1415 0.02011
45 12.76 --- --- --- 2.816×10-4 0.7971 603.4 0.01038
60 12.77 8.747×10-7 0.8308 36.37 3.939×10-4 0.7698 436.8 0.02731
80 8.311 1.038×10-6 0.7885 31.94 5.381×10-4 0.7677 622.6 0.01771
98 9.912 6.352×10-7 0.8383 26.06 5.954×10-4 0.725 1805 0.01217
Table 1  Fitting results of EIS of Q235 steel in simulated underground water solution at different temperatures
Fig.7  EIS plots of Q235 steel at different temperatures in highly compacted bentonite with 30% (saturated) (a), 20% (b) and10% (c) water
Fig.8  Tafel polarization curves of Q235 steel in simulated underground water solution
Fig.9  Tafel polarization curves of Q235 steel at different temperatures in highly compacted bentonite with 30% (saturated) (a), 20% (b) and 10% (c) water
Fig.10  Corrosion current density of Q235 steel in simulated underground water solution (a) and highly compacted bentonite with different contents of water (b) at different temperatures
[1] Chapman N, Mckinley I.Natural Analogues in Radioactive Waste Disposal[M]. Michigan: Graham & Trotman for the Commission of the European Communities, 1986
[2] Wang J, Chen W M, Su R, et al.Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chin. J. Rock Mech. Eng., 2006, 25(4): 801
[2] (王驹, 陈伟明, 苏锐等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801)
[3] Wang J, Fan X H, Xu G Q, et al.Geological Disposal of High Level Radioactive Waste in China: Progress in Last Decade [M]. Beijing: Atomic Energy Press, 2004
[3] (王驹, 范显华, 徐国庆等. 中国高放废物地质处置十年进展 [M].北京: 原子能出版社, 2004)
[4] IAEA. The principles of radioactive waste management, safety series No.115 [R]. Vienna: IAEA, 1995
[5] IAEA. Radioactive waste management status and trends: No.1 [R]. Vienna: IAEA/WMDB/ST/1, 2001
[6] SKB. Sea disposal of radioactive wastes (Technical Report TR-01-30) [R]. Vienna: IAEA, 2001
[7] Duquette D J, Latanision R M, Di Bella C A W, et al. Corrosion issues related to disposal of high-level nuclear waste in the Yucca Mountain repository peer reviewer's perspective[J]. Corrosion, 2009, 65(4): 272
[8] Wang J, Xu G Q, Zheng H L, et al.Geological disposal of high level radioactive waste in China: Progress during 1985-2004[J]. WorldNucl. Geosci., 2005, 22(1): 5
[8] (王驹, 徐国庆, 郑华铃等. 中国高放废物地质处置研究进展: 1985~2004[J]. 世界核地质科学, 2005, 22(1): 5)
[9] Ahn T M, Soo P.Corrosion of low-carbon cast steel in concentrated synthetic groundwater at 80 to 150 ℃[J]. Waste Manage., 1995, 15(7): 471
[10] Rosborg B, Werme L.The Swedish nuclear waste program and the long-term corrosion behaviour of copper[J]. J. Nucl. Mater., 2008,397: 142
[11] Wei X, Dong J H, Ke W.Crevice corrosion of Grade-2 Ti in simulated groundwater for geological disposal of high-level radioactive nuclear waste[J]. Acta Metall. Sin., 2013, 49(6): 675
[11] (魏欣, 董俊华, 柯伟. 工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为[J]. 金属学报, 2013, 49(6): 675)
[12] King F, Padovani C.Review of the corrosion performance of selected canister materials for disposal of UK HLW and/or spent fuel[J]. Corros. Eng. Sci. Technol., 2011, 46(2): 82
[13] Taniguchi N, Honda A, Ishikawa H.Experimental investigation of passivation behavior and corrosion rate of carbon steel in compacted bentonite[J]. Mater. Res. Soc., 1998, (506): 495
[14] Akira I, Mikazu Y, Yutaka S, et al.A research program for numerical experiments on the coupled thermo-hydro-mechanical and chemical processes in the near-field of a high-level radioactive waste repository [A]. Geoproc 2003 conference[C]. Stocktoml, Royal Institute of Technology (KTH), 2003: 346
[15] Winsley R J, Smart N R, Rance A P.Further studies on the effect of irradiation on the corrosion of carbon steel in alkaline media[J]. Corros. Eng. Sci. Technol., 2011, 46(2): 111
[16] Lee C T, Qin Z, Odziemkowski M, et al.The influence of groundwater anions on the impedance behaviour of carbon steel corroding under anoxic conditions[J]. Electrochem. Acta, 2006, 51: 1558
[17] Liu C, Pang X L, Liu Q L, et al.Corrosion behavior of carbon steel welded joints in simulated ground water solution [A]. The 7th national corrosion conference[C]. Changyuan: Chinese Society of Corrosion and Protection (CSCP), 2013: 324
[17] (刘超, 庞晓露, 刘泉林等. 碳钢焊接接头在模拟北山地下水溶液中的腐蚀行为 [A]. 第七届全国腐蚀大会论文摘要集[C]. 长垣: 中国腐蚀与防护学会, 2013: 324)
[18] Zheng M, Huang Y L, Lu D Z, et al.Determination of representative groundwater components for corrosion study in Beishan preselected area of high-level radioactive waste disposal repository[J]. J. Chin. Soc. Corros. Prot., 2016, 36(2): 185
[18] (郑珉, 黄彦良, 路东柱等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定[J]. 中国腐蚀与防护学报, 2016, 36(2): 185)
[19] Ye W M, Qian L X, Chen B, et al.Laboratory test on unsaturated hydraulic conductivity of densely compacted Gaomiaozi bentonite under confined conditions[J]. Chin. J. Roc. Mech. Eng., 2009, 28(1): 105
[19] (叶为民, 钱丽鑫, 陈宝等. 侧限状态下高压实高庙子膨润土非饱和渗透性的试验研究[J]. 岩石力学工程学报, 2009, 28(1): 105)
[20] Liu Y M, Wang J, Cao S F, et al.A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J]. Rock Soil Mech., 2013, 34(10): 2756
[20] (刘月妙, 王驹, 曹胜飞等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J]. 岩土力学, 2013, 34(10): 2756)
[21] Zhang Y J.Numerical analysis for coupled thermo-hydro-mechanical processes in engineered barrier of conceptual nuclear waste repository[J]. Eng. Mech., 2007, 24(5): 186
[21] (张玉军. 核废料处置概念库工程屏障中热-水-应力耦合过程数值分析[J]. 工程力学, 2007, 24(5): 186)
[22] Rhoades J D, Raats P A C, Prather R J. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulksoil electrical conductivity[J]. Soil Sci. Soc. Am. Proc., 1976, 40: 651
[23] Seladji S, Cosenza P, Tabbgh A, et al.The effect of compaction on soil electrical resistivity: A laboratory investigation[J]. Eur. J. Soil Sci., 2010, 61: 1043
[24] Li M C, Lin H C, Cao C N.Influence of moisture content on soil corrosion behavior of carbon steel[J]. Corros. Sci. Prot. Technol., 2000, 12(4): 218
[24] (李谋成, 林海潮, 曹楚南. 湿度对钢铁材料在中性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2000, 12(4): 218)
[25] Gardiner C P, Melchers R E.Corrosion of mild steel in porous media[J]. Corros. Sci., 2002, 44(11): 2459
[26] Gupta S K, Gupta B K.The critical soil moisture content in the underground corrosion of mild steel[J]. Corros. Sci., 1979, 19(3): 171
[27] Murray J N, Moran P J.Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy[J]. Corrosion, 1989, 45(1): 34
[28] Cheng Y F, Steward F R.Corrosion of carbon steels in high temperature water studied by electrochemical techniques[J]. Corros. Sci., 2004, 46(10): 2405
[29] Chen C F, Lu M X, Zhao G X, et al.Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel[J]. Acta Metall. Sin., 2003, 39(8): 848
[29] (陈长风, 路民旭, 赵国仙等. 温度, C1-浓度, Cr元素对N80钢CO2腐蚀电极过程的影响[J]. 金属学报, 2003, 39(8): 848)
[30] Zhang B H, Cong W B, Yang P.Electrochemical Corrosion and Protection of Metal [M]. Beijing: Chemistry Industry Press, 2005
[30] (张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005)
[31] Wu J.Effects of soil properties on electrode potential of steel in soils[J]. Acta Pedol. Sin., 1991, 28(2): 118
[31] (吴汮. 土壤性质对钢铁电极电位的影响[J]. 土壤学报, 1991, 28(2): 118)
[32] Wu Y H, Cai Z C, He X Y.Corrosion behavior of Q235 steel in saline soils with different humidity[J]. J. Shangqiu Teach. Coll., 2005, 21(2): 98
[32] (伍远辉, 蔡铎昌, 何晓英. Q235钢在不同湿度的青海盐湖盐渍土壤中的腐蚀行为[J]. 商丘师范学院学报, 2005, 21(2): 98)
[33] Nie X H, Du C W, Li X G.Influence of temperature on the corrosion behavior and mechanism of Q235 steel in Dagang soil[J]. J. Univ. Sci. Technol. Beijing, 2009, 31(1): 48
[33] (聂向晖, 杜翠薇, 李晓刚. 温度对Q235钢在大港土中腐蚀行为和机理的影响[J]. 北京科技大学学报, 2009, 31(1): 48)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!