Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (3): 245-252    DOI: 10.11902/1005.4537.2015.123
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution
Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG()
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Download:  HTML  PDF(1997KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition of octyl isoquinolinium bromide on Q235 carbon steel in HCl solution was studied by means of mass loss test, potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results show that octyl isoquinolinium bromide is a mix-type inhibitor which can inhibit the anodic- and cathodic-reactions. The inhibition efficiency increases with the concentration of inhibitor and decreases with temperature. The adsorption of octyl isoquinolinium bromide on Q235 carbon steel surface accords with Laugmuir isothermal adsorption. The adsorption equilibrium constant Kads is big, which can explain the strong adsorption ability of inhibitor for the steel.

Key words:  carbon steel      inhibitor      octyl isoquinolinium bromide      corrosion rate      inhibitionefficiency      adsorption     
Received:  20 July 2015     

Cite this article: 

Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 245-252.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.123     OR     https://www.jcscp.org/EN/Y2016/V36/I3/245

Fig.1  Molecular structure of octyl isoquinoliniumbromide
Fig.2  Changes of corrosion rate and inhibition efficiencywith the content of inhibitor [C8iQuin]Br
Fig.3  Corrosion rate and inhibition efficiency as a functionof temperature
Fig.4  Relationship between C/θ and C at different temperatures
Temperature / K Slope Linear regression coefficient R Kads / M-1 ΔGads / kJmol-1 ΔHads / kJmol-1 ΔSads / Jmol-1K-1
303 1.02 0.9998 16898 -34.64 -16.25 60.80
313 1.02 0.9997 13889 -35.27
323 1.01 0.9998 11765 -35.96
333 1.01 0.9996 9434 -36.46
343 1.02 0.9995 8289 -37.18
353 1.03 0.9998 6711 -37.65
Table 1  Thermodynamic parameters of inhibitor [C8iQuin]Br on the surface of Q235 mild steel at differenttemperatures
Fig.5  Relationship between ?Gads and T
Fig.6  Arrhenius corrosion curves of Q235 mild steel in 1.00 molL-1 HCl in the absence and presence ofdifferent concentrations of inhibitor [C8iQuin]Br
C / mmolL-1 A Ea / kJmol-1
0 2.41×106 36.32
0.01 3.80×106 37.85
0.05 1.13×107 41.73
0.10 2.15×107 43.90
0.30 4.19×107 48.04
0.50 6.34×107 50.67
Table 2  Ea and A of corrosion reaction with differentconcentrations of inhibitor [C8iQuin]Br
Fig.7  Polarization curves for Q235 mild steel in 1.00 molL-1 HCl in the presence and absence of different concentrations of inhibitor [C8iQuin]Br
CmmolL-1 EcorrmV IcorrμAcm-2 bamVdec-1 bcmVdec-1 η%
0 -0.492 738.34 122 124 ---
0.01 -0.488 511.08 111 118 30.78
0.05 -0.478 214.27 83 113 70.98
0.10 -0.474 127.52 77 112 82.73
0.30 -0.477 59.82 102 115 91.90
0.50 -0.470 48.08 101 118 93.49
Table 3  Polarization parameters and corresponding inhibition efficiencies for Q235 mild steel in 1.00 molL-1 HClwithout and with additions of inhibitor [C8iQuin]Br
Fig.8  Nyquist plots of Q235 mild steel in 1.00 molL-1 HCl in the presence and absence of different concentrations of inhibitor [C8iQuin]Br
Fig.9  Equivalent circuit model used to fit the EIS experimental data
C / mmolL-1 Rs / Ωcm2 Rp / Ωcm2 Cdl / μFcm-2 η / %
0 1.100 32.37 230.3 ---
0.01 1.001 44.70 45.51 27.58
0.05 0.960 92.43 36.92 64.98
0.10 0.907 145.93 27.08 77.82
0.30 0.814 245.97 17.32 86.84
0.50 0.814 270.07 11.17 88.01
Table 4  Impedance date of Q235 mild steel in 1.00 molL-1 HCl in the presence and absence of different concentrations of inhibitor [C8iQuin]Br
Fig.10  Surface morphologies of Q235 mild steel immersed for 5 h in 1.00 molL-1 HCl solutions without (a) and with inhibitor [C8iQuin]Br (b)
[1] Zhang T S.Corrosion Inhibitors [M]. Beijing: Chemical Industry Press, 2001
[1] (张天胜. 缓蚀剂[M]. 北京: 化学工业出版社, 2001)
[2] Tang B, Chen X Y.Study of corrosion inhibitors in acid pickling[J]. Clean World, 2006, 22(2): 22
[2] (汤兵, 陈欣义. 酸洗过程中的缓蚀剂[J]. 清洗世界, 2006, 22(2): 22)
[3] Xie B, Lai C, Zou L K, et al.Inhibition of N,N-diethylammonium O,O'- dicyclohexyldithiophosphate for Q235 steel in sulfuric solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(3): 225
[3] (谢斌, 赖川, 邹立科等. O,O'-二 (环己基) 二硫代磷酸-N,N-二乙铵对Q235钢在硫酸溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 225)
[4] Lin P C, Sun I W, Chang J K, et al.Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid[J]. Corros. Sci., 2011, 53(12): 4318
[5] Olivaresxometl O, Lopezaguilar C, Herrastigonzalez P, et al.Adsorption and corrosion inhibition performance by three new ionic liquids on API 5L X52 steel surface in acid media[J]. Ind. Eng. Chem. Res., 2014, 53(23): 9534
[6] Xu X L, Huang B H, Liu J, et al.Corrosion inhibition of pyrrolidonium ionic liquids for mild steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 336
[6] (徐效陵, 黄宝华, 刘军等. 盐酸溶液中吡咯烷酮离子液体对碳钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(5): 336)
[7] Jiang W Y, Yu W Z.Classification, synthesis and application of ionic liquid[J]. Met. Mater. Metall. Eng., 2008, 36(4): 51
[7] (蒋伟燕, 余文轴. 离子液体的分类、合成及应用[J]. 金属材料与冶金工程, 2008, 36(4): 51)
[8] Chun J H, Sang K J, Ra K H, et al.The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H2 evolution reaction at poly-Re/aqueous electrolyte interfaces[J]. Int. J. Hydrogen Energy, 2005, 30(5): 485
[9] Cao C N.Corrosion Electrochemistry [M]. 3rd. Ed. Beijing: Chemical Industry Press, 2008
[9] (曹楚南. 腐蚀电化学原理 [M]. 第三版. 北京: 化学工业出版社, 2008)
[10] Abdel-Rehim S S, Khaled K F, Abd-Elshafi N S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative[J]. Electrochim. Acta, 2006, 51(16): 3269
[11] Negm N A, Zaki M F.Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p -aminobenzoic acid for aluminum in 4N HCl[J]. Colloid. Surface., 2008, 322A: 97
[12] Zhu L Q, Liu R Q, Wang J D.Inhibition action of thiodiazole derivatives on corrosion of copper in 3%NaHCO3[J]. J. Chin. Soc. Corros. Prot., 2006, 26(2): 125
[12] (朱丽琴, 刘瑞泉, 王吉德. 噻二唑衍生物在3%NaHCO3溶液中对Cu的缓蚀作用[J]. 中国腐蚀与防护学报, 2006, 26(2): 125)
[13] Chen Z, Huang L, Zhang G, et al.Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers[J]. Corros. Sci., 2012, 65(4): 214
[14] Hegazy M A, Badawi A M, Rehim S S A E, et al. Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy) ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling[J]. Corros. Sci., 2013, 69(2): 110
[15] Kesavan D, Tamizh M M, Gopiraman M, et al.Physicochemical studies of 4-Substituted N-(2-Mercaptophenyl)-Salicylideneimines:Corrosion inhibition of mild steel in an acid medium[J]. J. Surfactants Deterg., 2012, 15(5): 567
[16] Negm N A, Sabagh A M A, Migahed M A, et al. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution[J]. Corros. Sci., 2010, 52(6): 2122
[17] Noor E A, Al-Moubaraki A H. Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4 [4′ (-X) -styryl pyridinium iodides/hydrochloric acid systems[J]. Mater. Chem. Phys., 2008, 110(1): 145
[18] Negm N A, Elkholy Y M, Zahran M K, et al.Corrosion inhibition efficiency and surface activity of benzothiazol-3-ium cationic schiffbase derivatives in hydrochloric acid[J]. Corros. Sci., 2010, 52(10): 3523
[19] Negm N A, Al Sabagh A M, Migahed M A, et al. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution[J]. Corros. Sci., 2010, 52(6): 2122
[20] Song W W, Zhang J, Du M.Inhibition performance of novel dissymmetric bisquaternary ammonium salt to Q235 steel in hydrochloric acid[J]. Acta Chim. Sin., 2011, 69(16): 1851
[20] (宋伟伟, 张静, 杜敏. 新型不对称双季铵盐缓蚀剂在HCl中对Q235钢的缓蚀行为[J]. 化学学报, 2011, 69(16): 1851)
[21] Martinez S, ?tern I.Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions[J]. J. Appl. Electrochem., 2001, 31(9): 973
[22] Aljourani J, Raeissi K, Golozar M A.Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution[J]. Corros. Sci., 2009, 51(8): 1836
[23] Li X H, Deng S D, Mu G N, et al.Inhibition effect of nonionic surfactant on the corrosion of cold rolled steel in hydrochloric acid[J]. Corros. Sci., 2008, 50(2): 420
[24] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid madia [J]. Colloid. Surface., 2008, 312(1)A: 7
[25] Pang X H, Li W H, Hou B R, et al.Inhibition effect of drug product of quinolones on the corrosion of mild steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2008, 28(3): 173
[25] (庞雪辉, 李伟华, 侯保荣等. 喹诺酮药品对Q235钢在HCl溶液中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(3): 173)
[26] Hmamou D B, Salghi R, Zarrouk A, et al.Alizarin red: An efficient inhibitor of C38 steel corrosion in hydrochloric acid[J]. Int. J. Electrochem. Sci., 2012, 7(6): 5716
[27] Wei B M.The Theory of Metal Corrosion and Application [M]. Beijing: Chemical Industry Press, 1984: 83
[27] (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1984: 83)
[28] Zhou X, Yang H Y, Cai D C, et al.The corrosion and inhibition of mild steel in monoethanolamine solution abounded with H2S[J]. J. Chin. Soc. Corros. Prot., 2005, 25(2): 79
[28] (周欣, 杨怀玉, 蔡铎昌等. 低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J]. 中国腐蚀与防护学报, 2005, 25(2): 79)
[29] Zheng X W, Gong M, Zeng X G, et al.Corrosion inhibition of L-phenylalanine for Q235 steel in sulfuric acid solutions[J]. Surf. Technol., 2012, 41(3): 33
[30] Sapre K, Seal S, Jepson P, et al.Investigation into the evolution of corrosion product layer (CPL) of 1018 C-steel exposed to multiphase environment using FIB and EIS techniques[J]. Corros. Sci., 2003, 45(1): 59
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[4] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[8] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[10] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[12] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[14] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[15] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
No Suggested Reading articles found!