Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 429-437    DOI: 10.11902/1005.4537.2014.183
Current Issue | Archive | Adv Search |
Corrosion Behavior of Al-Zn-Si-RE Alloy Powder Containing Water-borne Coating on Carbon Steel in 3.5%NaCl Solution
Qiong JIANG1,2,Qiang MIAO2(),Wenping LIANG2,Zhimei LIU2,Ke WANG2,Zhengjun YAO2,Xiaoxin WEI3
1. School of Materials Engineering, Yancheng Insitute of Technology, Yancheng 224051, China
2. College of Material Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
3. Jiangsu Linlong New Materials Co., Ltd., Wuxi 214183, China
Download:  HTML  PDF(4615KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and corrosion performance in 3.5%NaCl solution of an Al-Zn-Si-RE containing water-borne coating were investigated by means of SEM with EDS as well as potentiodynamic polarization curves and electrochemical EIS. The results indicate that Al-Zn-Si-RE coating shows a typical lamellar structure, which significantly increases the length of diffusion path for corrosive species; and an excellent coating uniformity in micro scale, which may be beneficial to its protectiveness. The corrosion process of Al-Zn-Si-RE coating can be divided into four stages during immersion in 3.5%NaCl solution: I) the active corrosion of Al-Zn-Si-RE flakes on the surface layer; II) the coverage of Al-Zn-Si-RE flakes by the corrosion product layer thereby decreasing their dissolution; III) the temporary sacrificial anode protection of the coating for the steel substrate when the electrolyte reached the interface coating/substrate; IV) the barrier protection caused by corrosion products. Therefore, the protection mechanism of the coating is physical barrier combined with a weak sacrificial anode protection.

Key words:  Al-Zn-Si-RE coating      composition uniformity      polarization plot      electrochemical impedance spectroscopy      corrosion behavior     
ZTFLH:     
Fund:  

Cite this article: 

Qiong JIANG, Qiang MIAO, Wenping LIANG, Zhimei LIU, Ke WANG, Zhengjun YAO, Xiaoxin WEI. Corrosion Behavior of Al-Zn-Si-RE Alloy Powder Containing Water-borne Coating on Carbon Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 429-437.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.183     OR     https://www.jcscp.org/EN/Y2015/V35/I5/429

Fig.1  Cross-sectional morphology of Al-Zn-Si-RE coating
Fig.2  SEM image (a) of Al-Zn-Si-RE coating and distribution maps of Al (b), Zn (c) and Si (d)
Fig.3  Polarization curves of Al-Zn-Si-RE coating, Zn-Al coating and Q235 steel after immersion in 3.5%NaCl solution for 2 h
System Ecorr V Icorr μAcm-2 βc Vdec-1 βa Vdec-1
Q235 steel –0.643 28.14 1.0800 0.0808
Zn-Al coating ?1.059 5.594 0.1203 0.0772
Al-Zn-Si-RE coating –0.907 1.025 0.1547 0.2543
Table 1  Electrochemical parameters obtained from polarization curves of three materials after immersion in 3.5%NaCl solution for 2 h
Fig.4  Nyquist (a1~d1) and Bode (a2~d2) plots for Al-Zn-Si-RE coating after immersion in 3.5%NaCl solution during corrosion stage I (a1, a2), II (b1, b2), III (c1, c2) and IV (d1, d2)
Fig.5  Equivalent circuits for Al-Zn-Si-RE coating after immersion in 3.5%NaCl solution during corrosion stage I (a), II (b), III (c) and IV (d)
Fig.6  Fitting results of Nyquist (a) and Bode (b, c) plots for Al-Zn-Si-RE coatings immersed for different time
Fig.7  Evolutions of the active dissolution resistance Rp of metal powers and film resistance Rf on the surface of metal flake with time at the second corrosion stage in 3.5%NaCl solution
Fig.8  Evolutions of the charge transfer resistance Rct with time at the third corrosion stage in 3.5% NaCl solution
Fig.9  Surface morphologies of Al-Zn-Si-RE coating after immersing in 3.5%NaCl solution for 20 d (a), 75 d (b), 100 d (c), 120 d (d) and 180 d (e)
[1] Zhang X M, Liu C M, Wang J J, et al. Research progress on materials to form the chromium-free dacromet film[J]. J. Mater. Metall., 2012, 11(1): 58 (张旭明, 刘春明, 王建军等. 无铬达克罗成膜物质的研究进展[J]. 材料与冶金学报, 2012, 11(1): 58)
[2] Peng T L, Man R L. Rare earth and silane as chromate replacers for corrosion protection on galvanized steel[J]. J. Rare Earths, 2009, 27(1): 159
[3] Shi C X, Zeng P, Li G L, et al. Influence of rare earth salt on the microstructure and corrosion resistance of water-based zinc-aluminum alloy coating[J]. Electroplat. Finish., 2010, 29(6): 51 (石存秀, 曾鹏, 李国亮,等. 稀土盐对水性锌铝合金涂层的微观结构与耐蚀性能的影响[J]. 电镀与涂饰, 2010, 29(6): 51)
[4] Lin A, Zhang X, Fang D J, et al. Study of an environment-friendly insulating coating with high corrosion resistance on electrical steel[J]. Anti-Corros. Methods Mater., 2010, 57(6): 297
[5] Zhu J M, Yao Z J, Jiang Q, et al. Microstructure and corrosion resistance of Cr-free nanocomposite Zn/Al coatings[J]. J. Chin. Soc.Corros. Prot., 2013, 33(5): 425 (朱俊谋, 姚正军, 蒋穹等. 无铬纳米锌铝涂层的微观组织及腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(5): 425)
[6] Ma C X. Chromium-free zinc-aluminum coatings and process optimization[D]. Harbin Institute of Technology, 2009 (马春霞. 无铬锌铝涂料及其工艺的优化[D]. 哈尔滨工业大学, 2009)
[7] Jiang D. Preparation and properties of waterborne chromium-free zinc-aluminum coating[D]. Kunming University of Science and Technology, 2009 (姜丹. 水性无铬锌铝涂层的制备与性能研究[D]. 昆明理工大学, 2009)
[8] Vesely D, Kalendova A. Anticorrosion efficiency of ZnxMgyAl2O4 core-shell spinels in organic coatings[J]. Prog. Org. Coat., 2008, 62(1): 5
[9] Cong S H, Hou Q. Corrosion resistance performance of epoxy Zn-Al-Mg-Ce riched alloy coating[J]. China Surf. Eng., 2010, 23(1): 109 (从善海, 侯强. 环氧富Zn-Al-Mg-Ce合金涂层耐腐蚀性能[J]. 中国表面工程, 2010, 23(1): 109)
[10] Xie D M, Feng H, Ma X C. Influence of silane medication on performance of zinc-riched coating[J]. Corros. Sci. Prot. Technol., 2005, 17(4): 237 (谢德明, 冯海, 马晓春. 硅烷偶联剂处理对富锌涂层行为的影响[J]. 腐蚀科学与防护技术, 2005, 17(4): 237)
[11] Liu Z M, Hofmann U, Krenzel V. Anticorrosive zinc flake coatings[J]. Electroplat. Finish., 2011, 30(12): 63 (刘振民, Hofmann U, Krenzel V. 锌薄片抗腐蚀涂层[J]. 电镀与涂饰, 2011, 30(12): 63)
[12] Liu Y, Li H, Li Z. EIS investigation and structural characterization of different hot-dipped zinc-based coatings in 3.5%NaCl solution[J]. Int. J. Electrochem. Sci., 2013, 8: 7753
[13] Zhu Z X, Xu B S, Chen Y X. Effect of Al content on electrochemical corrosion behavior of arc sprayed Zn-Al coatings[J]. China Surf. Eng., 2011, 24(6): 58 (朱子新, 徐滨士, 陈永雄. Al含量对Zn-Al合金涂层电化学腐蚀行为的影响[J]. 中国表面工程, 2011, 24(6): 58)
[14] Li S B, Wang R X, Yao P. Zinc-aluminum alloy wire and the electrochemical properties of the thermal spray coatings[J]. Dev. Appl. Mater., 1998, 6: 18 (李守本, 王瑞雪, 姚平. 锌铝合金丝及其热喷涂涂层的电化学特性[J]. 材料开发与应用, 1998, 6: 18)
[15] Chen W B, Chen P, Chen H Y, et al. Development of Al-containing zinc-rich paints for corrosion resistance[J]. Appl. Surf. Sci., 2002, 187(1/2): 154
[16] Hu H L. Development of chrome-free zinc-aluminum paints and failure mechanism[D]. Harbin Institute of Technology, 2008 (胡会利. 无铬锌铝烧结涂料的研制及耐蚀机理[D]. 哈尔滨工业大学, 2008)
[17] Ma H, Chen L, Chen Y. Effect of aluminum powders on properties of alcohol-soluble inorganic zinc-rich coating[J]. Plat. Finish., 2012, 33(12): 25) (麻慧, 陈玲, 谌岩. 铝粉对醇溶性无机富锌漆性能的影响[J]. 电镀与精饰, 2012, 33(12): 25)
[18] Jiang Q, Miao Q, Yao Z J, et al. Microstructure and corrosion resistance of waterborne Al-Zn-Si alloy coating[J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 311 (蒋穹, 缪强, 姚正军等. 水性Al-Zn-Si合金涂层微观组织及腐蚀性能研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 311)
[19] Jiang Q, Miao Q, Ding X, et al. Preparation and corrosion resistance of Al-Zn-Si alloy coating[J]. J. Mater. Prot., 2012, 45(8): 51 (蒋穹, 缪强, 丁祥等. Al-Zn-Si合金涂层的制备及其耐蚀性能[J]. 材料保护, 2012, 45(8): 51)
[20] Jiang Q, Miao Q, Tong F, et al. A high anticorrosion nano-particle reinforced multi-component Al-Zn-based alloy coating and its manufacturing methods and application[P]. China, CN103242686A,2013 (蒋穹, 缪强, 仝飞等. 高耐蚀水性锌铝多元合金基纳米防腐涂料及制备法与应用[P]. 中国, CN103242686A, 2013)
[21] Patel N S, Menghani J, Pai K B, et al. Corrosion behavior of Ti2N thin films in various corrosive environments[J]. J. Mater. Environ. Sci., 2010, 1(1): 34
[22] Gil L E, Liscano S, Goudeau P, et al. Effect of TiAlN PVD coatings on corrosion performance of WC-6%Co[J]. Surf. Eng., 2010,26(8): 562
[23] Jia Z J, Ma H Y, Wu X R, et al. Fundamentals of electrochemistry (V)—Electrochemical kinetic and charge-transfer process for electrochemical reaction[J]. Energy Storage Sci. Technol., 2013, 2(4): 402 (贾志军, 马洪运, 吴旭冉等. 电化学基础(V)—电极过程动力学及电荷传递过程[J]. 储能科学与技术, 2013, 2(4): 402)
[24] Zhang W W, Ma A B, Jiang J H, et al. Corrosion behavior of Zn-55%Al coating sprayed on marine steel compared with pure Zn and pure Al coatings[J]. China Surf. Eng., 2011, 24(3): 59 (张舞文, 马爱斌, 江静华等. 海洋工程用钢表面喷涂Zn, Al和Zn-55%Al伪合金涂层的耐蚀性[J]. 中国表面工程, 2011, 24(3): 59)
[25] Liu B, Liu L, Chen Z Y. Effect of micro Mo addition on anticorrosion ability of Cu base bulk metallic glass[J]. Acta Metall. Sin., 2007, 43(1): 82 (刘兵, 柳林, 陈振宇. 添加微量Mo对铜基块体非晶合金耐蚀性的影响[J]. 金属学报, 2007, 43(1): 82
[26] Zhou W J, Xu L K, Wang J, et al. Corrosion electrochemical behavior of Zn-Al silane coating on carbon steel[J]. Acta Metall. Sin., 2007, 43(9): 983 (周文娟, 许立坤, 王佳等. 碳钢表面硅烷锌铝涂层的腐蚀电化学行为[J]. 金属学报, 2007, 43(9): 983)
[27] Zhang W, Wang J, Li Y N, et al. Evaluation of metal corrosion under defective coatings by WBE and EIS technique[J]. Acta Phys. Chim. Sin., 2010, 26(11): 2941 (张伟, 王佳, 李玉楠等. WBE联合EIS技术研究缺陷涂层下金属腐蚀[J]. 物理化学学报, 2010, 26(11): 2941)
[28] Liu J G, Yan C W. Electrochemical characteristics of corrosion behavior of organic/Dacromet composite systems pretreated with gamma-aminopropyltriethoxysilane[J]. Surf. Coat. Technol., 2006,200(16): 4976
[29] Jiang Q, Miao Q, Liang W, et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5wt%NaCl solution[J]. Electrochim. Acta, 2014, 115: 644
[30] Liu J H, Shao Y W, Meng G Z, et al. Analysis of corrosion process of thin organic coatings using EIS and EN Methods[J]. Paint Coat. Ind., 2008, 38(6): 62) (刘继慧, 邵亚薇, 孟国哲等. 利用电化学阻抗谱和电化学噪声分析薄有机涂层的腐蚀过程[J]. 涂料工业, 2008, 38(6): 62)
[31] Hu J M, Zhang J Q, Cao C N. Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 2003, 46(4): 273
[32] Wei D F, Chatterjee I, Jones D A. Evaluation of corrosive degradation in coated steel using alternating current impedance spectroscopy[J]. Corrosion, 1995, 51(2): 97
[1] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[5] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[14] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[15] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
No Suggested Reading articles found!