Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 438-446    DOI: 10.11902/1005.4537.2014.187
Current Issue | Archive | Adv Search |
Antibacterial Performance of Epoxy Resin Coatings with Carbon Fiber Reinforcement in High Voltage Pulsed Electric Field
Haiqiang LIN1,Ke CHAI1(),Jinyi WU1,2,Pengpeng YANG1,Chunlei SONG1
1. Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Material and Chemical Engineering College, Hainan University, Haikou 570228, China
2. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Download:  HTML  PDF(2408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Epoxy resin coatings reinforced with different amount of carbon fiber of varied length were prepared, and which then were covered with a top coating of insulation. The antibacterial performance of the above coatings, especially for flavobacterium was examined by high voltages of 11 and 15 kV respectively. It was observed that the sterilizing efficiency of epoxy resin coatings without carbon fiber were 90.82% and 93.18% by voltage 11 and 15 kV respectively. For the coating with 0.01%(mass fraction) of carbon fiber, the sterilizing efficiency increases slightly with the increasing fiber length by voltage 11 kV. The epoxy resin coatings with carbon fiber of 7 mm in length achieved a sterilizing efficiency up to 99.82%. While the epoxy resin coatings containing 0.03% carbon fiber of 3 mm in length exhibits the highest sterilizing efficiency 99.73% by voltage of 11 kV; whilst the sterilizing efficiency of the epoxy resin coatings increased with the increasing voltage. Therefore, the conductive epoxy resin coating may provide a new prospect for environment-friendly and energy-saving technique of fouling prevention in the relevant industrial processes, which adopt pulse electric field technology.

Key words:  high-voltage pulsed electric field      epoxy resin coating      carbon fiber      sterilizing efficiency     
ZTFLH:     
Fund:  

Cite this article: 

Haiqiang LIN, Ke CHAI, Jinyi WU, Pengpeng YANG, Chunlei SONG. Antibacterial Performance of Epoxy Resin Coatings with Carbon Fiber Reinforcement in High Voltage Pulsed Electric Field. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 438-446.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.187     OR     https://www.jcscp.org/EN/Y2015/V35/I5/438

Fig.1  Sterilizing effect (a) and peak current (b) of different epoxy resin coatings at 11 kV voltage
Fig.2  Sterilizing effect (a) and peak current (b) of different epoxy resin coatings at 15 kV voltage
Fig.3  Microscopic images of epoxy resin coatings with 0.03% 3 mm (a) and 7 mm (b) carbon fiber additives
Fig.4  Raman spectra of the coating with 0.03% 3 mm carbon fiber additive before (a) and after application of 11 kV (b) and 15 kV (c) voltage
Fig.5  Raman spectra of 3 mm CF additive before (a) and after treatment at 11 kV (b) and 15 kV (c)
Applied voltage / kV D-peak raman shift G-peak raman shift R=ID/IG
0 1375 1597 1.082
11 1359 1600 1.056
15 1363 1594 1.006
Table 1  Analytical data of Raman spectra of 3 mm CF treated at different voltages
Fig.6  SEM images of epoxy resin coatings with different kinds of carbon fiber incorporation at different voltages: (a, b) 0.01% 3 mm CF, 0 kV; (c) 0.01% 3 mm CF, 15 kV; (d) 0.01% 3 mm CF, 11 kV; (e) 0.03% 3 mm CF, 0 kV; (f) 0.03% 3 mm CF, 11 kV
Area C O Ca Pt Ti Si Mg
Fig.6a 83.41 5.61 1.12 7.23 1.71 0.68 0.24
Fig.6c 70.36 9.24 6.00 6.86 5.13 1.61 0.79
Table 2  EDS results of square areas in Fig.6a and c (mass fraction /%)
[1] Xiao W L, Chai K, Wu J Y, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition[J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 359 (肖伟龙, 柴柯, 吴进怡等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 359)
[2] Almeida E, Diamantino T C, de Sousa O. Marine paints: The particular case of antifouling paints[J]. Prog. Org. Coat., 2007, 59(1): 2
[3] Dong M, Zhu X Y. Preparation of conductive and anticorrosive epoxy paints[J]. Electroplat. Finish., 2010, 29(9): 49 (董蔓, 朱晓云. 导电防腐环氧涂料的制备[J]. 电镀与涂饰, 2010, 29(9): 49)
[4] Li L L, Cheng Y Q, Zhang K, et al. Progress in non-toxic antifouling coatings[J]. J. Chin. Soc. Corros. Prot., 2008, 28(3): 181 (李丽玲, 程永清, 张凯等. 无毒防污涂料最新研究进展[J]. 中国腐蚀与防护学报, 2008, 28(3): 181)
[5] Gittens J E, Smith T J, Suleiman R, et al. Current and emerging environmentally-friendly systems for fouling control in the marine environment[J]. Biotechnol. Adv., 2013, 31(8): 1738
[6] Champ M A. The need for the formation of an independent, international marine coatings board[J]. Mar. Pollut. Bull., 1999, 38(4): 239
[7] Ma S D, Sun H Y, Huang G Q, et al. Effect of marine fouling creatures in corrosion of carbon steel[J]. J. Chin. Soc. Corros. Prot., 2000, 20(3): 49 (马士德, 孙虎元, 黄桂桥等. 海洋污损生物对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2000, 20(3): 49)
[8] Yang W J, Neoh K G, Kang E T, et al. Polymer brush coatings for combating marine biofouling[J]. Prog. Polym. Sci., 2014, 39(5): 1017
[9] Bo F, Wang Z H, Wang G W, et al. A survey on development of anti-fouling materials[J]. Corros. Prot., 2014, 35(5): 420 (柏芳, 王泽华, 王国伟等. 防海生物污损材料研究现状[J]. 腐蚀与防护, 2014, 35(5): 420)
[10] Yu D X, Cheng M T, Cheng J, et al. Conductive paint technology of modified carbon fibers acrylic resin composite[J]. New Chem. Mater., 2007, 35(11): 65 (喻冬秀, 陈明涛, 程江等. 碳纤维体系导电涂料的制备工艺[J]. 化工新型材料, 2007, 35(11): 65)
[11] Li H J, Wang G J. Research and development of antifouling marine coatings[J]. Paint. Coat. Ind., 2005, 35(3): 45 (李慧娟, 王国建. 船舶防污涂料研究进展[J]. 涂料工业, 2005, 35(3): 45)
[12] Yang C, Wang Y P, Xing L Y, et al. Study on the performances of carbon fillings contained waterborne tert-fluoro electroconductive coatings[J]. Mod. Paint Finish., 2008, 11(7): 24 (杨超, 王云普, 邢兰莹等. 炭系填料/水性叔氟导电涂料的性能研究[J]. 现代涂料与涂装, 2008, 11(7): 24)
[13] Aloui W, Ltaief A, Bouazizi A. Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications[J]. Superlattice. Microstruct., 2013, 64: 581
[14] Chen L J, Zhang X Y, Chen H Q. The advance in the environmentally friendly antifouling coating[J]. New Chem. Mater., 2005, 33(7): 43 (陈立军, 张心亚, 陈焕钦等. 环保型防污涂料研究进展[J]. 化工新型材料, 2005, 33(7): 43)
[15] Wang L M, Shi Z N, Guan Z C, et al. Study of non-thermal microorganism inactivation by pulsed electric field[J]. High Voltage Eng., 2005, 31(2): 64 (王黎明, 史梓男, 关志成等. 脉冲电场非热杀菌效果分析[J]. 高电压技术, 2005, 31(2): 64)
[16] Jaeger H, Schulz A, Karapetkov N, et al. Protective effect of milk constituents and sublethal injuries limiting process effectiveness during PEF inactivation of Lb. rhamnosus[J]. Int. J. Food Microbiol., 2009, 134(1): 154
[17] Ayhan Z, Yeom H W, Zhang Q H, et al. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials[J]. J. Agr. Food Chem., 2001, 49(2): 669
[18] Pina-Pérez M C, Martínez-López A, Rodrigo D. Cinnamon antimicrobial effect against Salmonella typhimurium cells treated by pulsed electric fields (PEF) in pasteurized skim milk beverage[J]. Food Res. Int., 2012, 48(2): 777
[19] Chang J H,Dong Q G. Theory and Analysis of Spectroscopy[M]. Beijing: Science Press, 2001 (常建华,董绮功. 波谱原理及解析[M]. 北京: 科学出版社, 2001)
[20] Dean J A. Translated by Chang W B,et al. Analytical Chemistry Handbook Section 6: Infrared and Raman Spectroscopy[M]. Beijing: Science Press, 2003 (Dean J A主编. 常文保等译. 分析化学手册第6章: 红外光谱法与拉曼光谱法[M]. 北京: 科学出版社, 2003)
[21] Zhang M, Zhu B, Wang C G, et al. Raman spectra of carbon fibers during electrochemical treatment[J]. Spectrosc. Spect. Anal., 2010, 30(1): 105 (张敏, 朱波, 王成国等. 碳纤维在电化学处理中的拉曼光谱研究[J]. 光谱学与光谱分析, 2010, 30(1): 105)
[22] Lei Z K, Wang Q, Qiu W, et al. On the tensile deformation behavior of M55JB carbon fiber/microdroplet based on micro-raman spectroscopy[J]. J. Exp. Mech., 2012, 27(1): 30 (雷振坤, 王权, 仇巍等. 微拉曼光谱研究M55JB碳纤维/微滴的拉伸变形行为[J]. 实验力学, 2012, 27(1): 30)
[23] Montes-Moran M A, Young R J. Raman spectroscopy study of HM carbon fibres: Effect of plasma treatment on the interfacial properties of single fibre/epoxy composites[J]. Carbon, 2002, 40(6): 845
[24] Montes-Morán M A, Young R J. Raman spectroscopy study of high-modulus carbon fibres: Effect of plasma-treatment on the interfacial properties of single-fibre-epoxy composites: Part II: Characterisation of the fibre-matrix interface[J]. Carbon, 2002, 40(6): 857
[25] Pataro G, Lisi M D, Donsì G, et al. Microbial inactivation of E. coli cells by a combined PEF-HPCD treatment in a continuous flow system[J]. Innov. Food Sci. Emerg. Technol., 2014, 22: 102
[26] Halpin R M, Duffy L, Cregenzán-Alberti O, et al. The effect of non-thermal processing technologies on microbial inactivation: An investigation into sub-lethal injury of escherichia coli and pseudomonas fluorescens[J]. Food Control, 2014, 41: 106
[27] Leong C K, Chung D D L. Improving the electrical and mechanical behavior of electrically conductive paint by partial replacement of silver by carbon black[J]. J. Electron. Mater., 2006, 35(1): 118
[28] Enríquez E, de Frutos J, Fernández J F, et al. Conductive coatings with low carbon-black content by adding carbon nanofibers[J]. Composites Sci. Technol., 2014, 93: 9
[29] Zhang J X, Zheng Y P, Yang X D, et al. Surface functionalizatio of carbon nanotubes: Grafted from epoxy-terminated molecule[J]. Acta Aeronaut. Astronaut. Sin., 2008, 28(5): 78 (张娇霞, 郑亚萍, 杨晓东等. 碳纳米管的表面功能化研究: 接枝环氧基聚合物[J]. 航空材料学报, 2008, 28(5): 78)
[30] Zhao J L, Fu T, Han Y, et al. Preparation and mechanical properties of carbon fiber reinforced HA/Epoxy composites[J]. J. Mater. Sci. Eng., 2003, 21(5): 640 (赵俊亮, 付涛, 憨勇等. 碳纤维增强羟基磷灰石/环氧树脂复合材料的制备与力学性能[J]. 材料科学与工程学报, 2003, 21(5): 640)
[1] Feng Lu; Xiaoyun Zhang; Zhihui Tang; Ming Liu. GALVANIC CORROSION BEHAVIOR BETWEEN CARBON FIBER REINFORCED PLASTIC MATERIALS AND ALUMINUM ALLOYS[J]. 中国腐蚀与防护学报, 2005, 25(1): 39-43 .
No Suggested Reading articles found!