Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 131-137    DOI: 10.11902/1005.4537.2013.080
Original Article Current Issue | Archive | Adv Search |
Effect of Aging Temperature on Microstructure and Corrosion Behavior of 15-5PH Precipitation Hardened Stainless Steel
HUA Xiaozhen, HUANG Jinhua, NIE Lun, ZHOU Xianliang, PENG Xinyuan
School of Material Science and Engineering, Nanchang HangKong University, Nanchang 330063,China
Download:  HTML  PDF(8388KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of aging treatment temperature on the evolution of the microstructure and corrosion resistance of 15-5PH stainless steel was studied by means of XRD, SEM and TEM as well as immersion test and measurements of polarization curve and electrochemical impedance spectroscopy. The results show that the martensitic structure of the steel is gradually decomposed to be finer with the increase of aging temperature, while NbC particles precipitate in between martensitic laths. Spherical particles of Cu-rich phase is separated out at aging temperature 550 ℃. Austenite was observed at 580 ℃ implying the reverse conversion from martensite to austenite occurs due to over ageing. With the increase of aging temperature, the Cu-rich phase change into coherent from incoherent, which gathered to growth as short rod at 620 ℃; the corrosion weight loss rates increase; the corrosion potential decrease; Ac impedance values reduced and therefore the corrosion resistance of the steel degraded.
Key words:  aging temperature      15-5PH precipitation hardened stainless steel      corrosion     
Received:  08 May 2013     
ZTFLH:  TG174.2  

Cite this article: 

HUA Xiaozhen, HUANG Jinhua, NIE Lun, ZHOU Xianliang, PENG Xinyuan. Effect of Aging Temperature on Microstructure and Corrosion Behavior of 15-5PH Precipitation Hardened Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 131-137.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.080     OR     https://www.jcscp.org/EN/Y2014/V34/I2/131

[1] Yang X. The Properties and Macrostructures of 17-4PH Stainless Steel [D]. Harbin: Harbin Engineering University, 2007
(杨晓. 17-4PH不锈钢性能和组织研究 [D]. 哈尔滨: 哈尔滨工程大学, 2007)
[2] Liu D X. Corrosion and Protection of Materials [M]. Xi'an: Northwest Industrial University Press, 2006
(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006)
[3] Li P, Cai Q Z, Wei B K, et al. Effect of aging temperature on erosion-corrosion of 17-4PH casting stainless steels in dilute sulfuric acid slurry [J]. Tribology, 2006, 26(4): 341-346
(李平, 蔡启舟, 魏伯康等. 时效处理温度对17-4PH铸造不锈钢在稀硫酸料浆中的冲刷腐蚀性能影响 [J]. 摩擦学学报, 2006, 26(4): 341-346)
[4] Xiang S, Wang J P, Xie T, et al. Effect of aging temperature on corrosion behaviors of 17-4PH precipitation-hardening stainless steel in waste sulphuric acid [J]. Corros. Prot., 2010, 31(12): 909-912
(向嵩, 王江平, 解田等. 时效温度对17-4PH不锈钢在工业废硫酸溶液中腐蚀行为的影响 [J]. 腐蚀与防护, 2010, 31(12): 909-912)
[5] Xia X L, Li Y Q, Wu D M, et al. Effect of different heat treatment on over aging organiztion and peformance of 17-4 PH steel [J]. Mater. Sci. Technol., 1997, 5(2): 106-109
(夏晓玲, 李玉清, 吴大茂等. 不同热处理对17-4PH钢过时效组织与性能的影响 [J]. 材料科学与工艺, 1997, 5(2): 106-109)
[6] Biguirani Hbibi H R. The effect of aging upon the microstructure and mechanical properties of type 15-5PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142-159
[7] Kochmanski P, Nowacki J. Influence of initial heat treatment of 17-4PH stainless steel on gas nitriding kinetics [J]. Surf. Coat. Technol., 2008, 202: 4834-4838
[8] Zhou X L, Nie L, Hua X Z, et al. Electrochemical performance of initial pitting of 15-5PH stainless steel [J]. J. Chin. Soc. Corros. Prot., 2012, 23(5): 423-426
(周贤良, 聂轮, 华小珍等. 15-5PH不锈钢初期点蚀的电化学特性 [J]. 中国腐蚀与防护学报, 2012, 23(5): 423-426)
[9] Cao Z F, Qiao L J, Chu W Y. Study on effect to pitting potential of 321 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2006, 26(1): 23-26
(曹占锋, 乔利杰, 禇武扬. 321不锈钢点蚀电位影响因素的研究 [J]. 中国腐蚀与防护学报, 2006, 26(1): 23-26)
[10] Raja K S, Rao K P. Pitting behavior of type 17-4PH stainless steel weldments [J]. Corros. Sci., 1995, 51(8): 586-592
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!