Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (1): 17-22    DOI:
Current Issue | Archive | Adv Search |
Corrosion Behavior of Microarc Oxidized Alumina Films in High Temperature NaCl Solution
XU Ke1, XIAO Shubin2, LIU Yanhui1, RUAN Guoling1
1. The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China;
2. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Download:  PDF(4577KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Abstract:The corrosion behaviors of microarc oxidized 5052 alumina immersed in 70 ℃/7% NaCl solutions with different time were studied through the open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements. The results reveal that high temperature solution could permeate through microarc oxidation films and induce the corrosion of aluminum alloy substrate in the initial stage. After that, the corrosion products depositing in film defects could block the permeation of solution, which make microarc oxidation films exhibiting a self-sealing ability. And the film resistance keeps mostly unchangeable after initial rapidly decrease. Sealing treatment of microarc oxidation film could improve the self-sealing ability effectively.

Key words:  microarc oxidation      aluminum alloy      corrosion      EIS      self-sealing     
ZTFLH:  TG172.5  

Cite this article: 

XU Ke,XIAO Shubin,LIU Yanhui,RUAN Guoling. Corrosion Behavior of Microarc Oxidized Alumina Films in High Temperature NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 17-22.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I1/17

[1] Wei T B, Yan F Y, Tian J. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy [J]. J. Alloys Compd., 2005, 389(1-2): 169-176
[2] Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte [J]. Corros. Sci., 2007, 49(2): 672-693
[3] Li J M, Cai H, Jiang B L. Growth mechanism of black ceramic layers formed by microarc oxidation [J]. Surf. Coat. Technol., 2007, 201(21): 8702-8708
[4] Shao Z C, Kang F D, Hao Q W, et al. Effect of the technological parameters on the properties of microarc oxidation coating of LF4 Al-alloy [J]. Chin. J. Mater. Res., 2006, 20(5): 528-532
(邵忠财, 康凤娣, 郝清伟等. LF4铝合金微弧氧化膜的性能 [J]. 材料研究学报,2006,20(5):528-532)
[5] Xue W B, Wang C, Tian H, et al. Corrosion behaviors and galvanic studies of microarc oxidation films on Al-Zn-Mg-Cu alloy [J]. Surf. Coat. Technol., 2007, 201(21): 8695-8701
[6] Wen L, Wang Y M, Zhou Y, et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy [J]. Corros. Sci., 2010, 52(8): 2687-2696
[7] Wen L, Wang Y M, Liu Y, et al. EIS study of a self-repairing microarc oxidation coating [J]. Corros. Sci., 2011, 53(2): 618–623
[8] Shi P, Ng W F, Wong M H, et al. Improvement of corrosion resistance of pure magnesium in Hanks' solution by microarc oxidation with sol-gel TiO2 sealing [J]. J. Alloys Compd., 2009, 469(1-2): 286-292
[9] Wang Y Q, Wang Y, Wang F H, et al. Microstructure, corrosion and wear resistances of microarc oxidation coating on Al alloy 7075[J]. Acta Metall. Sin., 2011, 47(4): 455-461
(王艳秋, 王岳, 王福会等. 7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能 [J]. 金属学报,2011,47(4):455-461)
[10] Yun F L, Xu K. Effect of heavy metal ions on the corrosion of aluminum alloy 5052[J]. Chem. Ind. Eng., 2010, 27(2): 173-176
(云凤玲, 徐克. 重金属离子对5052铝合金耐蚀性能的影响 [J]. 化学工业与工程,2010,27(2):173-176)
[11] Zhang W, Wang J, Zhao Z Y, et al. EIS study on the deterioration process of organic coatings under immersion and cyclic wet-dry conditions [J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 329-335
(张伟, 王佳, 赵增元等. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程 [J]. 中国腐蚀与防护学报,2011,31(5): 329-335)
[12] Huang Y L, Hong S H, Huang H C, et al. Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS) [J]. Corros. Sci., 2008, 50(12): 3569-3575
[13] Zhao X H, Zuo Y, Zhao J M, et al. A study on the self- sealing process of anodic films on aluminum by EIS [J]. Surf. Coat. Technol., 2006, 200(24): 6846-6853
[14] Zuo Y, Zhao P H, Zhao J M. The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions [J]. Surf. Coat. Technol., 2003, 166(2-3): 237-242
[15] Deflorian F, Rossia S, Fedrizzi L, et al. EIS study of organic coating on zinc surface pretreated with environmentally friendly products [J]. Prog. Org. Coat., 2005, 52(4): 271-279
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!