Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 262-266    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF Ce ON MICROSTRUCTURE AND CORROSION RESISTANCE OF Mg-9Gd-4Y-1Nd-0.6Zr ALLOY
YI Jianlong1,2, ZHANG Xinming2
1. Science College of Hunan Agricultural University, Changsha 410128
2. School of Materials Science and Engineering, Central South University, Changsha 410012
Download:  PDF(1015KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To obtain high strength and good corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy, effects of Ce on microstructure and corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr magnesium alloy was investigated by means of scanning electron microscopy, X-ray diffraction, corrosion mass loss test, electrochemical impedance spectroscopy and potentio-dynamic polarization test. The Mg alloy with 5% Ce shows better corrosion resistance. Its corrosion current density decreased about 55.6%. Its corrosion potential moved positive about 141 mV than that of Mg-9Gd-4Y-1Nd-0.6Zr alloy. Rare earth elements in the Mg alloy enriched along grain boundary as network distribution were caused by proper content of Ce. Corrosion resistance of the Mg alloy was enhanced by change of second phase particles. Their volume fraction in the Mg alloy surface increased higher and their sizes decreased than those of Mg-9Gd-4Y-1Nd-0.6Zr alloy.
Key words:  Mg-9Gd-4Y-1Nd-0.6Zr      magnesium alloy      microstructure      corrosion     
Received:  03 May 2011     
ZTFLH: 

TG146.2

 
Corresponding Authors:  YI Jianlong     E-mail:  yijianlong@126.com

Cite this article: 

YI Jianlong, ZHANG Xinming. EFFECTS OF Ce ON MICROSTRUCTURE AND CORROSION RESISTANCE OF Mg-9Gd-4Y-1Nd-0.6Zr ALLOY. J Chin Soc Corr Pro, 2012, 32(3): 262-266.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/262

[1] Xiao Y, Zhang X M,Chen J M, et al. Performance of Mg-9Gd-4Y-0.6Zr alloy with high strength and heat resistance [J]. J.Central South Univ.(Sci. Technol.), 2006, 37(5): 850-855)

    (肖阳, 张新明, 陈健美等. 高强耐热 Mg-9Gd-4Y-0.6Zr合金的性能[J].中南大学学报(自然科学版), 2006, 37(5): 850-855)

[2] Zhang XM, Li L, Deng YL, et al. Superplasticity and microstructure in Mg-Gd-Y-Zr alloy prepared by extrusion. [J]. J.Alloys. Compd. 2009, 481(1-2): 296-300

[3] Liu S F, Huang S Y, Xu P. Influence of cerium addition on as-cast microstructure refinement of AZ91 magnesium alloy [J]. Acta Metall. Sin., 2006, 42(4): 443-448

    (刘生发, 黄尚宇, 徐萍. Ce对AZ91镁合金铸态组织细化的影响[J]. 金属学报, 2006, 42(4): 443-448)

[4] Zhou H T, Zeng X Q, Liu W F, et al. Effect of Ce on microstructures and mechanical properties of AZ61 wrought magnesium [J]. Chin. J. Nonferrous Met., 2004, 14(1): 99-104

    (周海涛,曾小勤, 刘文法等. 稀土铈对 AZ61 变形镁合金组织和力学性能的影响[J].中国有色金属学报, 2004, 14(1): 99-104)

[5] Wang S W, Xia C Q, Wu A R. Effects of Ce on the microstructure and mechanical properties of AZ31 magnesium alloy [J]. Mining Metall. Eng., 2006, 26(4): 76-78

    (王少武, 夏长清,吴安如. 稀土铈对AZ31镁合金显微组织和力学性能的影响[J]. 矿冶工程,2006, 26(4): 76-78)

[6] Zhong L Y, Liu W J, Cao F H, et al. Effect of cerium and lanthanum alloy on microstructure and corrosion behavior of AZ91 magnesium alloy [J]. Corros. Sci. Prot. Technol., 2009, 21(2): 91-93

    (钟丽应, 刘文娟, 曹发和等. 稀土铈, 镧合金化对 AZ91腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(2), 91-93)

[7] Baril G, Blanc C, Pebere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures.[J]. J. Electrochem. Soc., 2001, 148: B489

[8]  Zhao H J, Zhang Y H, Kang Y L. Effect of cerium on the ignition point of AZ91D magnesium alloy [J]. Light Alloy Fabr.Technol., 2008, 36 (2): 42-44

     (赵鸿金, 张迎晖, 康永林.稀土元素Ce对AZ91D镁合金燃点的影响[J]. 轻合金加工技术, 2008, 36(2):42-44)

[9] Li D G, Feng Y R, Bai Z Q, et al. Effect of cerium on the electronic property of passive film formed on Fe-3Cr alloy [J]. J.Chin. Soc. Corros. Prot., 2008, 28(6): 363-368

    (李党国,冯耀荣, 白真权等. 稀土铈对Fe-3Cr钝化膜电化学腐蚀行为的影响[J].中国腐蚀与防护学报, 2008, 28(6): 363-368)

[10] Zhao X, Wang Y D, Zhu Y. Effect of Ce and Mg on the corrosion resistance of hot-dip aluminizing coating [J]. Mater.Prot., 2008, 41(11): 14-15

    (赵霞, 王永东, 朱艳等.稀土铈和镁对热浸铝镀层耐蚀性能的影响[J]. 材料保护, 2008, 41(11):14-15)

[11] Peng, Z K, Zhang X M, Chen J M, et al. Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium[J]. Mater. Sci. Technol.,2005, 21(6): 722-726

[12] Song G L. Magnesium Alloy Corrosion and Protection [M].Beijing: Chemistry Industry Press, 2006

     (宋光铃.镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006)

[13] Yi J L, Zhang X M, Deng Y L, et al. Effects of ageing on strength and corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy [J].J. Mater. Sci. Eng., 2010, (4): 490-493

     (易建龙, 张新明,邓运来等. 时效对Mg-9Gd-4Y-1Nd-0.6Zr镁合金强度和耐蚀性的影响[J].材料科学与工程学报, 2010, (4): 490-493)

[14] Morlidge J R, Skeldon P, Thompson G. E, et al. Format-ion and the efficiency of anodic film growth on aluminium[J].Electrochim. Acta, 1999, 44(14): 2423-2435

[15] Makar G L, Kruger J, Joshi A. Advances in magnesium alloys and composites[C]. Magnesium Technology, 1988: 105-121

[16] Zhang Z X, Wang E K. Electrochemical Principle and Method [M]. Beijing: Science Press, 2000

     (张祖训, 汪尔康,电化学原理和方法[M]. 北京: 科学出版社, 2000)
 
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!