Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (1): 44-47    DOI:
Current Issue | Archive | Adv Search |
CORROSION PROTECTION OF Al-Zn-In-Mg-Ga-Mn ALUMINOUS SACRIFICIAL ANODE
HUANG Yanbin1, SONG Gaowei1, LIU Xuebin1, DING Huadong1, YAN Yonggui2, SHAO Xinhai1
1. Department of Equipment Remanufacture Engineering, Academy of Armored Force Engineering, Beijing 100072
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Materials Research Institute, Qingdao 266071
Download:  PDF(1057KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Activation performance and dissolution behavior of Al-Zn-In-Mg-Ga-Mn sacrifice anode under condition of natural corrosion and coupled with 7A52 aluminum alloy was investigated by electrochemistry impedance spectrum technology, mass loss method and SEM analysis technology. The result showed: the corrosion rate of 7A52 which was protected by sacrificial anode was decreased at a certain extent. The sacrificial anode corrodes uniformity, and corrosion products fall off easily. Al-Zn-In-Mg-Ga-Mn sacrifice anode in natural corrosion occurs localized corrosion and dissolves non-uniform, which the active pots was covered by oxide film and corrosion products, and the corrosion reaction was prevented.
Key words:  aluminous sacrificial anode      marine corrosion protection      electrochemical impedance      corrosion     
Received:  09 August 2010     
ZTFLH: 

TG174.41

 
Corresponding Authors:  SONG Gaowei     E-mail:  yuky2008@163.com

Cite this article: 

HUANG Yanbin, SONG Gaowei, LIU Xuebin1 DING Huadong, YAN Yonggui, SHAO Xinhai. CORROSION PROTECTION OF Al-Zn-In-Mg-Ga-Mn ALUMINOUS SACRIFICIAL ANODE. J Chin Soc Corr Pro, 2012, 32(1): 44-47.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I1/44

[1] Song Y H, Guo Z C, Lei A M, et al. Current state of research on sacrificial anode materials[J]. Corros. Sci. Prot.Technol., 2004, 16 (1): 24-28

    (宋曰海, 郭忠诚, 类爱民等.牺牲阳极材料的研究现状[J]. 腐蚀科学与防护技术, 2004, 16(1): 24-28)

[2] Zhang W Y. Research and application of sacrificial anode materials [J]. Yunnan Metall., 2008, 6(31): 45-47

    (张文毓.牺牲阳极材料研究与应用[J]. 云南冶金, 2008,6(31): 45-47)

[3] Li W L, Yan Y G, Chen G, et al. Research on Al-Zn-In-based high-performance sacrificial anode materials[J]. Corros. Sci. Prot.Technol., 2009, 21(2): 122-124

    (李威力, 闫永贵, 陈光等. Al-Zn-In系牺牲阳极低温电化学性能研究[J]. 腐蚀科学与防护技术, 2009,21(2): 122-124)

[4] Ma K Y, Song Y H, Guo Z C. Research on Al-Zn-In-based high-performance sacrificial anode materials[J]. J. Kunming Univ.Sci. Technol., 2005, 30(2): 20-23

    (马克毅, 宋曰海, 郭忠诚. Al-Zn-In系高性能牺牲阳极材料的研究[J]. 昆明理工大学学报, 2005,30(2): 20-23)

[5] Zhang X Y, Huo S Z, Zhang Y K. Effects of alloying elements on performance of Al-Zn-In-Ga sacrificial anode[J]. Mater.Prot., 1996, 29(2): 3-6

[6] Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water[J]. J. Chin. Soc. Corros. Prot.,2008, 28(3): 186-192

    (徐宏妍, 李延斌.铝基牺牲阳极在海水中的活化行为[J]. 中国腐蚀与防护学报, 2008, 28(3):186-192)

[7] Peng Y L, Lin C G, Duan D X. Corrosion behavior of aluminum alloy sacrificial anode in sea water under wet-dry cyclic exposure condition[A]. 5 th National Corrosion Congress Collection[C]. Beijing: 2009

    (彭衍磊, 蔺存国, 段东霞.铝合金牺牲阳极在海水干湿交替条件下的腐蚀电化学行为研究[A].第五届全国腐蚀大会[C]. 北京: 2009)

[8] Cao C N. Principles of Electrochemistry of Corrosion (3rd)[M]. Beijing: Chemical Industry Press, 2008: 253-255

    (曹楚南.腐蚀电化学原理(第三版)[M]. 北京: 化学工业出版社, 2008: 253-255)

[9] Wu Y S, Zheng J S. Electrochemistry Protection and Slow Release Medicinal Preparation Applied Technology [M]. Beijing:Chemical Industry Press, 2005: 65

    (吴荫顺, 郑家燊.电化学保护和缓释剂应用技术[M].北京: 化学工业出版, 2005: 65)

[10] Li X G, Dong C F, Xiao K, et al. Research Progress on Atmospheric Corrosion Behavior of Metals in Pollutant Atmospheres[M]. Beijing: Science Press, 2009: 270-271

     (李晓刚, 董超芳, 肖葵等. 金属大气腐蚀初期行为与机理[M]. 北京:科学出版社, 2009: 270-272)

[11] Li J F, Zheng Z Q, Ren W D. Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Mater. Rev.,2005, 19(2): 81-83

     (李劲风, 郑子樵, 任文达.第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81-83)

[12] Yan Y G, Zeng H J, Li W L, et al. Research on low driving voltage Al-Ga alloy anode and its activation mechanism[J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 329-332

     (闫永贵, 曾红杰,李威力等. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J].中国腐蚀与防护学报, 2010, 30(4): 329-332)

[13] Li Y Z, Wen J B, Zhao S L, et al. Effect of In content on microstructure and electrochemical performance of Al-Zn-In-Mg-Ti alloy[J]. Corros. Sci. Prot. Technol., 2010, 22(3): 216-219

     (李元侦, 文九巴, 赵胜利等.不同In含量Al-Zn-In-Mg-Ti合金组织与电化学性能分析[J].腐蚀科学与防护技术, 2010, 22(3): 216-219)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!