Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (6): 442-448    DOI:
Research Articles Current Issue | Archive | Adv Search |
COMPARATIVE STUDY ON CHARACTERIZATION OF CORROSION RESISTANCE OF MICRO-ARC OXIDATION COATINGS ON MAGNESIUM ALLOYS
MA Ying1,2, FENG Junyan1, MA Yuezhou1, ZHAN Hua1,GAO Wei2
1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050
2. Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand
Download:  PDF(2058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Micro-arc oxidation (MAO) coatings were prepared on AZ91D magnesium alloys with same process. The corrosion resistance of coatings was characterized by immersion test, spot test and electrochemical tests, and the surface morphologies of coatings were observed with SEM. The results of six tests have shown that the corrosion resistance of magnesium alloys after MAO treatment is improved dramatically. The anti-corrosion ability of MAO coatings could not be presented properly with immersion test because it is hard to decide which evaluation criteria, weight loss or weight gain, should be taken due to corroded products that might be stuck in coatings with porous microstructure and were hardly eliminated completely. spot test has been considered as a quick way to detect the corrosion resistance of MAO coatings, but colour changing of drip liquid in the first place was adopted as proper counting point, and the concentration of nitric acid in drip liquid needed to be doubled when meeting coatings with good corrosion resistance in order to stimulate a corrosion action faster. Electrochemical tests have been considered to carry out the overall characterization of the corrosion resistance of MAO coatings properly, and more information such as corrosion potential, corrosion current and impedance etc could be obtained from the tests of cyclic voltammetry (CV), Tafel technique, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS), which in turn will enhance the further research on the corrosion behavior of coatings. Finally, the corrosion resistance of MAO coatings was closely related with the thickness and chemical composition of coatings and also with their internal and surface microstructure.
Key words:  magnesium alloy      micro-arc oxidation      corrosion resistance      immersion test      spot test      electrochemical test     
Received:  17 September 2009     
ZTFLH: 

TG146.2

 
Corresponding Authors:  MA Ying     E-mail:  mayingcn2008@163.com

Cite this article: 

MA Ying, FENG Junyan, MA Yuezhou, ZHAN Hua,GAO Wei. COMPARATIVE STUDY ON CHARACTERIZATION OF CORROSION RESISTANCE OF MICRO-ARC OXIDATION COATINGS ON MAGNESIUM ALLOYS. J Chin Soc Corr Pro, 2010, 30(6): 442-448.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I6/442

[1] Chen X M, Luo C P, Liu J W, et al. Structure of ceramic coating produced by micro-arc oxidation on Mg alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2006, 37(6): 1065-1069

    (陈显明, 罗承萍, 刘江文等. 镁合金微弧氧化膜层结构 [J]. 中南大学学报(自然科学版), 2006, 37(6): 1065-1069)

[2] Zhi Q, Gao J, Dong C F, et al. Corrosion behavior of micro-arc oxidation film on AZ91D magnesium alloy [J]. Acta Metall. Sin.,2008, 44(8): 986-990

    (郅青, 高瑾, 董超芳等. AZ91D镁合金微弧氧化膜的腐蚀行为研究 [J]. 金属学报, 2008, 44(8): 986-990)

[3] Shi H Y, Yang W, Jiang B L. Composite technology and coatings obtained by micro-arc oxidation and electrophoresis of AZ31 Mg-based alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28(3): 155-160

    (时惠英, 杨巍, 蒋百灵. AZ31镁合金微弧-电泳复合膜层制备工艺及其耐蚀性 [J]. 中国腐蚀与防护学报, 2008, 28(3): 155-160)

[4] Wang L S, Pan C X, Cai Q Z, et al. Corrosion failure mechanism of micro-arc oxidation coatings formed on AZ91D magnesium alloy [J].J. Chin. Soc. Corros. Prot., 2008, 28(4): 219-224

    (王立世, 潘春旭, 蔡启舟等. 镁合金表面微弧氧化陶瓷膜的腐蚀失效机理 [J]. 中国腐蚀与防护学报, 2008, 28(4): 219-224)

[5] Yang P X, Guo H F, An M Z, et al. Evaluation on corrosion resistance of ceramic coated magnesium alloy [J]. J. Aeronaut. Mater.,2007, 27(3): 33-37

    (杨培霞, 郭洪飞, 安茂忠等. 镁合金表面微弧氧化陶瓷膜耐蚀性能评价 [J]. 航空材料学报, 2007, 27(3): 33-37)

[6] Zhang Z Y, Zhao Q, Liu Y E. Study on micro-arc oxidation technology and corrosion resistance of ceramic film on magnesium alloy [J]. Electroplat. Finish, 2008, 27(5): 30-33

    (章志友, 赵晴, 刘月娥. 镁合金微弧氧化工艺及陶瓷层耐蚀性能研究 [J]. 电镀与涂饰, 2008, 27(5): 30-33)

[7] Duan H P, Du K Q, Yan C W, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D [J]. Electrochim. Acta, 2006, 51: 2898-2908

[8] Luo H H, Cai Q Z, Wei B K, et al. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy [J]. J. Alloys Compd., 2008, 464: 537-543

[9] Cao C N. Principle of Corrosion Electrochemistry [M]. Beijing:Chemical Industry Press, 2004, 292-293

    (曹楚南. 腐蚀电化学原理 [M]. 北京:化学工业出版社, 2004, 292-293)
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[6] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[11] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[12] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[13] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[14] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
No Suggested Reading articles found!