Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (6): 449-452    DOI:
Research Articles Current Issue | Archive | Adv Search |
ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED
GUO Haiyan, ZHU Junqiu, SHAO Yanqun, TANG Dian
Institute for Materials Research, Fuzhou University, Fuzhou 350108
Download:  PDF(424KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  30%Ru-70%Ti/Ti anode coatings on titanium TA2 substrates were prepared by thermal decomposition method. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was introduced into this process as a templating agent. The effect of the templating agent CTAB on the surface area and the electrocatalytic activity of the anodes were studied by chlorine evolution potential (ECl), cyclic voltammetry (CV), voltammetric charge capacity (q*), active sites (Na) and roughness (Rf) tests. The results show that the using of templating agent CTAB had significant effects on reducing chlorine potential and enhancing electrocatalytic activity. The improvements of the electrocatalytic activity the RuO2-TiO2/Ti anodes can be attributed to two reasons: on the one hand, the high-surface areas and the porous oxide structures were obtained via CTAB, on the other hand, the porous oxide coatings had high-density structural defects, the surface active sites density was increased.
Key words:  titanium anode, surfactant      roughness, surface-active site      electrochemical properties     
Received:  27 July 2009     
ZTFLH: 

TG166

 
  TQ153

 
Corresponding Authors:  SHAO Yanqun     E-mail:  yqshao1989@163.com

Cite this article: 

GUO Haiyan, ZHU Junqiu, SHAO Yanqun, TANG Dian. ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED. J Chin Soc Corr Pro, 2010, 30(6): 449-452.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I6/449

[1] Beer H B. The invention and industrial development of metal anodes [J]. J Electrochem. Soc., 1980, 127(8): 303C-307C

[2] Trasatti S. Electrocatalysis: understanding the success of DSA [J]. Electrochim. Acta, 2000, 45(15): 2377-2385

[3] Xu L K, Scantlebury J D. A study on the deactivation of an IrO2-Ta2O5 coated titanium anode [J].Corros. Sci., 2003, 45(12): 2729-2740

[4] Hayfield P C S.Development of the noble metal/oxide coated titanium electrode [J]. Platin Met. Rev., 1998, 42(2): 46-55

[5] Xu L K, Xin Y L, Wang J T.A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54(6): 1820-1825

[6] Comninellis C, Vercesi G P. Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating [J]. J Appl. Electrochem., 1991, 21(4): 335-345

[7] Terezo A J, Pereira E C. Fractional factorial design applied to investigate properties of Ti: IrO2-Nb2O5 electrodes [J]. Electrochim. Acta, 2000, 45(25-26): 4351-4358

[8] Feng S X. Ordered mesoporous materials with improved stability and catalytic activity [J]. Catalysis, 2005, 35(1): 9-24

[9] Ratnamala A, Suresh G, Durga K V, et al. Template synthesized nano-crystalline natrotantite: Preparation and photocatalytic activity for water decomposition [J]. Mater. Chem. Phys., 2008,110(1): 176-179

[10] Debraj C, Subhash C L, Asim B. Highly porous organic-inorganic hybrid silica and its titanium silicate analogs as efficient liquid-phase oxidation catalysts [J]. Appl. Catalysis A:General, 2008, 342(1-2): 29-34

[11] Xie Y, Zhao X J,  Li Y Z, et al.CTAB-assisted synthesis of mesoporous F-N-codoped TiO2 powders with high visible-light-driven catalytic activity and adsorption capacity [J]. J Solid State Chem., 2008, 181(8): 1936-1942

[12] Lee D U, Jang S R, Vittal R, et al. CTAB facilitated spherical rutile TiO2 particles and their advantage in a dye-sensitized solar cell [J].Solar Energy, 2008, 82(11): 1042-1048

[13] Wang Y J , Ma J M,  Luo M F, et al. Preparation of high-surface area nano-CeO2 by template-assisted precipitation method [J]. J. Rare Earths, 2007,25(1): 58-62

[14] Liu Y, Zhao W W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors [J]. Electrochim Acta, 2008, 53(8): 3296-3304

[15] Zhu J Q, Shao Y Q, Wang X, et al. CTAB-assisted preparation of RuO2-TiO2 coated anodes [J]. J. Fuzhou Univ. (Nat. Sci. Ed.), 2009,37(2): 228-231

     (朱君秋,邵艳群,王欣等. CTAB辅助制备RuO2-TiO2涂层钛阳极 [J]. 福州大学学报(自然科学版),2009,37(2): 228-231)

[16] Farla L A D, Booata J F C. Trasatti S. Physico-chemical and electrochemical characterization of Ru-based ternary oxides containing Ti and Ce [J]. Electrochem. Acta, 1992, 37(13): 2511-2518

[17] Silava L A D, Alves V A, Trasatti S, et al. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7-x)PtxO2 oxygen evolution from anodic solution [J]. J Electroanal. Chem., 1997, 427(1-2): 97-104

[18] Zhang J Z, Wang Z L, Liu J, et al. Self-Assembled Nanostructures [M]. New York: Kluwer Academic/Plenum Publishers, 2003

[19] Trasatti S. Advances in Electrochemistry and Electrochemical Engineering [M]. New York:Wiley, 1981

[20] Luca N, Stefano P, Alvise B, et al. Morphology, microstructure and electrocatalytic properties of RuO2-SnO2  thin films [J]. J Electrochem. Soc., 1999, 146(1): 220-225\par
 
No related articles found!
No Suggested Reading articles found!