Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (5): 396-402    DOI:
Research Articles Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING
FU Ruidong1,2, HE Miao3, LUAN Guohong3, DONG Chunlin3,KANG Ju2
1. Yanshan University, State Key Laboratory of Metastable Materials Science and Technology, Qinhuangdao 066004
2. College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
3. China FSW Center Beijing FSW Technology Limited Company, Beijing 100024
Download:  PDF(5179KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures of friction stir welded (FSW) joint of 2024 aluminum alloy were examined by using optical microscope and transmission electron microscope. The corrosion behaviors of the joint were investigated by method of acid salt spray. The analysis results of microstructure show that the arc stripe is the main feature on the surface of the weld seam due to the extrusion action of the shoulder of the stir tool. The grain and second phase particles are also refined. The second phase particles are mainly composed of Al2CuMg(S phase) and CuAl2(θ phase). The corrosion test shows that the resistance to corrosion of FSW seam is lower than that of base metal pure aluminum layer. There exists an unevenness for the corrosion of the FSW seam. The corrosion initially results from pitting corrosion and finally develops to exfoliation.
Key words:  2024 aluminum alloy      friction stir welding      microstructure      salt spray test      corrosion     
Received:  20 April 2009     
ZTFLH: 

TG178

 
Corresponding Authors:  RuiDong Fu     E-mail:  rdfu@ysu.edu.cn

Cite this article: 

FU Ruidong, HE Miao, LUAN Guohong, DONG Chunlin,KANG Ju. CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING. J Chin Soc Corr Pro, 2010, 30(5): 396-402.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I5/396

[1] Matrukanitz R P. Selection and weldability of heat-treatable aluminum alloys, ASM Handbook-Welding, Brazing and Soldering 6 [M]. ASM Int., 1990: 528-536 [2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding [P]. Int. Pat.,PCT/GB92/02203, 1991, 9 [3] Thomas W M, Nicholas E D. Friction stir welding for the transportation industries [J]. Mater. Des., 1997, 18(4-6): 269-273 [4] Ericsson M, Sandstrom R. Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG [J]. Int. J. Fatigue, 2003, 25: 1379-1387 [5] Balasubramanian V, Lakshminarayanan A K. The mechanical properties of the GMAW, GTAW and FSW joints of the RDE-40 aluminum alloy [J].Int. J. Microstruct. Mater. Prop., 2008, 3(6): 837-853 [6] Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium [J].Acta Mater., 2003, 51(3): 713-729 [7] Litynska L, Braun R, Staniek G, et al. TEM study of the microstructure evolution in a friction stir-welded AlCuMgAg alloy [J]. Mater. Chem. Phys., 2003, 81: 293-295 [8] Yang B S, Yan J H, Michael S A, et al. Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds.Part I. Metallurgical studies [J]. Mater. Sci. Eng., 2004,A364(1-2): 55-65 [9] Michael S A, Yang B S, Anthony R P, et al. Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds. Part II. Mechanical characterization [J]. Mater.Sci. Eng., 2004, A364(1-2): 66-74 [10] Cavaliere P, Cerri E, Squillace A. Mechanical response of 2024-7075 aluminium alloys joined by friction stir welding [J]. J. Mater. Sci., 2005, 40(14): 3669-3676 [11] Omar H. Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints [J]. Mater. Sci. Eng., 2008,A492(1-2): 168-176 [12] Staron P, Kocak M, Williams S. Residual stresses in friction stir welded Al sheets [J]. Appl. Phys. A: Mater. Sci. Process, 2002, 74: 1161-1162 [13] Michael B P, Thomas G H, Baumann J A, et al. Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld [J]. Acta Mater., 2006, 54(15): 4013-4021 [14] Linton V M, Ripley M I.Influence of time on residual stresses in friction stir welds in age-hardenable 7xxx aluminium alloys [J]. Acta Mater., 2008, 56(16):4319-4327 [15] Li Y, Murr L E, McClure J C. Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al [J]. Sci. Mater., 1999, 40(9) : 1041-1046 [16] Colligan K. Material flow behavior during friction stir welding of aluminum [J]. Weld. J., 1999, 78(7): 229-237 [17] Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation [J]. Mach Tools Manuf., 2003, 43: 605-615 [18] Lu S X, Yan J C, Li W G, et al. Simulation on temperature field of friction stir welded joints of 2024-T4 Al [J]. Acta Metall.Sin. 2005, 18(4): 552-556 [19] Kamp N, Sullivan A, Robson J D.Modelling of friction stir welding of 7xxx aluminium alloys [J].Mater. Sci. Eng., 2007, A466(1-2): 246-255 [20] Li J F, Zheng Z J, Ren W D. Function mechanism of secondary phase on localized corrosion of aluminum alloy [J]. Mater. Rev.,2005, 19(2): 81-90      (李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制 [J].材料导报. 2005, 19(2): 81-90) [21] Wang Z Y, Ma T, Han W, et al.Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferrous Met. Soc. China, 2007, l7:326-334 [22] Sun B D, Li K. Present research situation and development trend of corrosion protection treatment of aluminum and alloy [J]. Corros. Prot., 1998, 19(5): 195-197      (孙宝德, 李克. 铝及铝合金防腐蚀表面技术的研究现状与发展 [J]. 腐蚀与防护. 1998, 19(5): 195-197) [23] Geng X W, Zhu L J, He C L. Development of research on corrosion behaviors of friction stir weld [J]. Mater.Rev., 2007, 21(11): 252-255      (耿学文, 朱丽娟, 贺春林. 搅拌摩擦焊焊缝腐蚀研究进展 [J]. 材料导报. 2007, 21(11): 252-255) [24] Davenport A J, Ambat R, Jariyaboon M, et al. Corrosion of friction stir welds in aerospace alloys [J]. Proc.Electrochem. Soc.,2003, 23: 403-412 [25] Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci., 2007, 49(2):877-909 [26] Biallas G, Braun R, Donne C D, et al. Mechanical properties and corrosion behavior of friction stir welded 2024-T3 [C]. 1st International Symposium on Friction Stir Welding, Thousand Oaks, CA, 1999 [27] Paglia C S, Carroll M C, Pitts B C, et al. Strength, corrosion, and environmentally assisted cracking of a 7075-T6 friction stir weld [J]. Mater. Sci. Forum, 2002, 396-402(3): 1677-1684 [28] Buchheit R G, Paglia C S. Localized corrosion and stress corrosion cracking of friction stir welded 7075 and 7050 [J]. Proc. Electrochem. Soc., 2003, 23: 94-103
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!