Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (6): 481-486    DOI:
技术报告 Current Issue | Archive | Adv Search |
HIGH TEMPERATURE NAPHTHENIC ACID CORROSION OF STEEL IN HIGH TAN REFINING MEDIA
YU Jianfei1;2; GAN Fuxing2;3; HAO Long3; CHEN Zhiliang2
1. Hubei Electric Power Testing & Research Institute; Wuhan 430077
2. School of Resource and Environmental Science; Wuhan University; Wuhan 430079
3. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Download:  PDF(2140KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of carbon steel and stainless steel in white oil withm naphthenic acid were studied under high temperature by mass loss method and surface analysis. Naphthenic acid corrosion (NAC) rates were directly related to experimental temperature and total acid number (TAN). The activation energy was calculated and the process kinetics could be represented by Arrhenius-type equation. The relationship between the isothermal line in liquid phase and that in vapor phase at different TAN values had a significant distinction with the change of temperature. The relationship between corrosion rate and square root of TAN is linear. The corrosion rate decreased sharply with the increase of exposure time from 1.5 h to 12 h, and then remained comparative steady state after 12 h. The findings have important implications for assessing the corrosivity of crude oils with high TAN value from various resources.

Key words:  naphthenic acid      corrosion      carbon steel      stainless steel      oil     
Received:  23 July 2008     
ZTFLH: 

TG174.4

 
Corresponding Authors:  GAN Fuxing     E-mail:  fxgan@163.com

Cite this article: 

YU Jianfei GAN Fuxing HAO Long CHEN Zhiliang. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION OF STEEL IN HIGH TAN REFINING MEDIA. J Chin Soc Corr Pro, 2009, 29(6): 481-486.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I6/481

[1] Zhou S, Stack M M, Newman R C.Characterization of synergistic effects between erosion and corrosion in an aqueous environments using electrochemical techniques [J]. Corrosion, 1996, 52(12): 934-942
[2] Gutzeit J. Naphthenic acid corrosion in oil refineries [J]. Mater. Perform,1977, 16(10): 24-35
[3] Slavcheva E, Shone B, Turnbull A. Review of naphthenic acid corrosion in oil refining [J]. Br. Corros. J.,1999, 34(2): 125-131
[4] Piehl R L. Naphthenic acid corrosion in crude distillation units [J]. Mater. Perform., 1988, 27(1): 37-43
[5] Turnbull A, Slavcheva E, Shone B. Factors controlling naphthenic acid corrosion [J]. Corrosion, 1998, 54: 922-930
[6] Wu X Q, Jina H M, Zheng Z M, et al. The testing equipment simulating high-temperature and high-velocity situations in oil refinery industry and the selection of its experimental prameters [J]. J. Chin. Soc. Corros.Prot., 2002, 22(1): 1-7
    (吴欣强, 敬和民, 郑玉贵等. 模拟工业炼油环境高温高流速状态的循环测试装置及其实验参数选择 [J]. 中国腐蚀与防护学报, 2002, 22(5): 257-263)
[7] Wu X Q, Jina H M, Zheng Y G, et al. Study on corrosion and erosion-corrosion behaviors of carbon steel in naphthenic acid mediums at high temperature [J]. J. Chin. Soc.Corros. Prot., 2002, 22(5): 257-263
    (吴欣强, 敬和民, 郑玉贵等. 碳钢在高温环烷酸介质中冲刷腐蚀行为[J]. 中国腐蚀与防护学报,2002, 22(5): 257-263)
[8] Wu X R, Jing H M, Zheng Y G, et al. Study on high-temperature naphthenic acid corrosion and erosion-corrosion of aluminized carbon steel [J]. J. Mater. Sci., 2004, 39(11): 975-985
[9] Qu D R, Zheng Y G, Ke W. Correlation between the corrosivity of naphthenic acids and their chemical structures [J]. Anti-Corros.Methods Mater., 2007, 54(2): 211-218
[10] Qu D R, Zheng Y G, Yao H M, et al. High temperature naphthenic acid corrosion and sulphidic corrosion of Q235 and 5Cr1/2Mo in synthetic refining media [J].Corros. Sci., 2006, 48: 1960-1985
[11] Jayaraman A, Saxena R C.Corrosion and its control in petroleum refineries-a review [J].Corros. Prev. Control, 1995, 14 (12): 123-131
[12] Gao Y M,Cheng J J, Yu G. Corrosion mechanism of A3 steel in naphthenic acid [J]. Corros. Sci. Prot. Technol, 2000, 12(1): 27-29
     (高延敏, 陈家坚, 余刚. 环烷酸对A3钢腐蚀机理的研究 [J]. 腐蚀科学与防护技术, 2000, 12(1): 27-29)

[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!