Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1277-1288    DOI: 10.11902/1005.4537.2024.410
Current Issue | Archive | Adv Search |
Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode
LIU Penghe1,2, XUE Lili1, XU Likun2(), XIN Yonglei2, GUO Mingshuai2, ZHOU Shuai2, DUAN Tigang2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1277-1288.

Download:  HTML  PDF(12329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The anode of oxides-coated Ti-substrate plays an important role in the electro-chlorination system for biofouling prevention in seawater. The surface condition of Ti-substrate affects the performance of the anode. Herein, the effect of hydrogen pre-charging for the Ti-substrate on the microstructure and electrochemical properties of Ti/RuO2-IrO2-TiO2 anode was studied using surface analysis methods like SEM, XRD, and electrochemical techniques such as CV, EIS, potentiodynamic polarization measurement, and accelerated life test. The results show that a surface layer composed of hydrides of TiH1.5 and TiH2 is formed on the surface of Ti-substrate after being charged with hydrogen, which reduces the corrosion resistance of Ti substrate. As the current density for hydrogen charging increases, the oxide anode presents more large cracks while the porosity of the oxide coating increased, which enhances the electrochemically active surface area and electrocatalytic activity of the oxide anode for chlorine evolution reaction, but lowers the electrochemical stability of the anode. When the charging current density rises to 500 mA/cm2, on the contrary, the electrochemical activity of the oxide anode is decreased somewhat while the stability of the anode is improved to some extent.

Key words:  titanium substrate      hydrogen charging      oxide anode      microstructure      electrochemical properties     
Received:  25 December 2024      32134.14.1005.4537.2024.410
ZTFLH:  TG174  
Fund: Exchange Projects at the 10th Regular Session of Scientific and Technological Cooperation Committee of China and Croatia (10-2)(10-2)
Corresponding Authors:  XU Likun, E-mail: xulk@sunrui.net

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.410     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1277

Fig.1  Surface morphologies of titanium substrates with acid etching before (a, b) and after hydrogen charging for 4 h in sulfuric acid solution at the current densities of 50 (c, d), 100 (e, f), 250 (g, h) and 500 (i, j) mA/cm2
Fig.2  XRD spectra of titanium substrates with acid etching before and after hydrogen charging at different cathode current densities in sulfuric acid solution
Fig.3  Nyquist (a), Bode phase angle (b) and Bode modulus (c) diagrams of titanium substrates before and after hydrogen charging at different cathode current densities in 3.5%NaCl solution, and corresponding equivalent circuit diagram (d)
I / mA·cm-2Rs / Ω·cm2Qf / μΩ·cm2·S nn1Rf / kΩ·cm2Qct / µΩ·cm2·S nn2Rct / kΩ·cm2
Uncharged36.023.00.959623.030.882970
5034.030.50.9463.912.70.73150
10033.932.70.9214.813.70.71108
25033.536.30.888.0916.50.7491.1
50034.538.90.935.5117.30.7063.9
Table 1  Fitting parameters of EIS of titanium substrates uncharged and charged with hydrogen at different cathode current densities
Fig.4  Potentiodynamic polarization curves of titanium substrates uncharged and charged with hydrogen at different cathode current densities
Fig.5  Surface morphologies of RuO2-IrO2-TiO2 anodes prepared on acid-etched titanium substrates uncharged (a) and charged with hydrogen at the cathode current densities 50 (b), 100 (c), 250 (d) and 500 (e) mA/cm2
Fig.6  XRD patterns of RuO2-IrO2-TiO2 anodes prepared on titanium substrates uncharged and charged with hydrogen at different cathode current densities
Fig.7  Nyquist diagrams recorded in 3.5%NaCl solution at 1.20 V (vs. SCE) for RuO2-IrO2-TiO2 anodes prepared on titanium substrates without and with hydrogen charging at different current densities (a), and equivalent circuit diagram (b)
I / mA·cm-2Rs / Ω·cm2Qdl / mΩ·cm2·SnnRct / Ω·cm2W / Ω·cm2
Uncharged32.979.250.7912.573.37
5031.0510.50.8110.251.84
10029.7710.90.807.152.20
25031.3619.30.744.041.49
50031.1615.00.774.341.51
Table 2  Fitting parameters of EIS of the oxide anodes on titanium substrates uncharged and charged with hydrogen at different current densities
Fig.8  Cyclic voltametric curves recorded in 3.5%NaCl solution at different scanning rates for the oxide anodes on titanium substrates uncharged (a) and charged with hydrogen at the current densities of 50 (b), 100 (c), 250 (d) and 500 (e) mA/cm2, and variations of the current density at 0.7 V (vs. SCE) with scanning rate (f)
I / mA·cm-2qtotal* / mC·cm-2qouter* / mC·cm-2qinner* / mC·cm-2ε
Uncharged16.659.307.350.44
5020.919.8111.100.53
10030.3412.1218.220.60
25035.4213.0522.370.63
50027.8712.9714.900.53
Table 3  Voltammetric charge parameters and porosities of the oxide anodes on titanium substrates uncharged and charged with hydrogen at different current densities
I / mA·cm-2Cdl / μF·cm-2φ
Uncharged5.310.133
505.750.144
1007.970.199
2508.270.207
5008.050.201
Table 4  Double-layer capacitances and morphological factors of the oxide anodes on titanium substrates uncharged and charged with hydrogen at different current densities
Fig.9  Potentiodynamic polarization curves measured in 3.5%NaCl solution for the oxide anodes on titanium substrates uncharged and charged with hydrogen at different current densities
Fig.10  Cell voltage vs. time curves recorded during accelerated life tests in 1 mol/L sulfuric acid solution at 1 A/cm2 for the oxide anodes prepared on titanium substrates uncharged and charged with hydrogen at different current densities
[1] Xu L K, Sun M X. Electrochemical Protection Technology for Marine Ships [M]. Beijing: National Defense Industry Press, 2022
许立坤, 孙明先. 船舶电化学保护技术 [M]. 北京: 国防工业出版社, 2022
[2] Li C Y, Zhang G F, Fu H T. Development and application of electrolyzing seawater antifouling technique [J]. Dev. Appl. Mater., 1996, (1): 38
李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用 [J]. 材料开发与应用, 1996, (1): 38
[3] Trasatti S. Electrocatalysis: Understanding the success of DSA® [J]. Electrochim. Acta, 2000, 45: 2377
[4] Hine F, Yasuda M, Noda T, et al. Electrochemical behavior of the oxide-coated metal anodes [J]. J. Electrochem. Soc., 1979, 126: 1439
[5] Zhao F, Wang D W, Guo Q Z, et al. Performance study of RGO-CNTs hybrid material modified RuO2-IrO2-SnO2/Ti anode [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 787
赵 菲, 王东伟, 郭泉忠 等. RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 787
[6] Pouladvand I, Asl S K, Hoseini M G, et al. Characterization and electrochemical behavior of Ti/TiO2-RuO2-IrO2-SnO2 anodes prepared by sol-gel process [J]. J. Sol-Gel. Sci. Technol., 2019, 89: 553
[7] Zeng Y, Chen K N, Wu W, et al. Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction [J]. Ceram. Int., 2007, 33: 1087
[8] Hoseinieh S M, Ashrafizadeh F, Maddahi M H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions [J]. J. Electrochem. Soc., 2010, 157: E50
[9] Kameyama K, Tsukada K, Yahikozawa K, et al. Surface characterization of RuO2‐IrO2‐TiO2 coated titanium electrodes [J]. J. Electrochem. Soc., 1994, 141: 643
[10] Takasu Y, Sugimoto W, Nishiki Y, et al. Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes [J]. J. Appl. Electrochem., 2010, 40: 1789
[11] Panić V, Dekanski A, Mišković-stanković V B, et al. On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure [J]. J. Electroanal. Chem., 2005, 579: 67
[12] Chu L Y, Xu L K, Wu L B, et al. Effect of oxalic acid etching on morphology and electrocatalytic activity of oxide anodes [J]. Acta Metall. Sin., 2005, 41: 763
初立英, 许立坤, 吴连波 等. 草酸浸蚀对氧化物阳极形貌及电催化性能的影响 [J]. 金属学报, 2005, 41: 763
[13] Baronetto D, Kodintsev I M, Trasatti S. Origin of ohmic losses at Co3O4/Ti electrodes [J]. J. Appl. Electrochem., 1994, 24: 189
[14] Shao D, Yan W, Li X L, et al. A highly stable Ti/TiH x /Sb-SnO2 anode: preparation, characterization and application [J]. Ind. Eng. Chem. Res., 2014, 53: 3898
[15] Wu S, Wang J L, Wang X B, et al. Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning [J]. Mater. Res. Bull., 2024, 171: 112605
[16] Li J W, Li X C, Sui M L. Formation mechanism of hydride precipitation in commercially pure titanium [J]. J. Mater. Sci. Technol., 2021, 81: 108
doi: 10.1016/j.jmst.2021.01.009
[17] Wang Q Q, An X D, Zhu T, et al. Effect of electrochemical hydrogen charging on defect structure in titanium [J]. J. Alloy. Compd., 2021, 885: 160909
[18] Zhang W J, Yang F, Chen C P. Mechanical properties and hydrogen diffusion analysis of titanium alloy microstructure [J]. Dev. Appl. Mater., 2023, 38(3): 43
张文娟, 杨 帆, 陈超鹏. 钛合金微结构力学性能和氢扩散分析 [J]. 材料开发与应用, 2023, 38(3): 43
[19] Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions [J]. Thin Solid Films, 2016, 598: 260
[20] Wu W, Liu J, Liu Z Y, et al. Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater [J]. J. Electroanal. Chem., 2018, 822: 23
[21] Liu S P, Zhang Z, Xia J, et al. Effect of hydrogen precharging on mechanical and electrochemical properties of pure titanium [J]. Adv. Eng. Mater., 2020, 22: 1901182
[22] Peng W S, Xing S H, Qian Y, et al. Effect of flowing seawater on corrosion characteristics of passivation film on TA2 pure-Ti pipes [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1038
彭文山, 邢少华, 钱 峣 等. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1038
doi: 10.11902/1005.4537.2023.292
[23] Takasu Y, Onoue S, Kameyama K, et al. Preparation of ultrafine RuO2-IrO2-TiO2 oxide particles by a sol-gel process [J]. Electrochim. Acta, 1994, 39: 1993
[24] Ardizzone S, Trasatti S. Interfacial properties of oxides with technological impact in electrochemistry [J]. Adv. Colloid Interface Sci., 1996, 64: 173
[25] Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes [J]. Electrochim. Acta, 1990, 35: 263
[26] Silva J F, Dias A C, Araújo P, et al. Electrochemical cell design for the impedance studies of chlorine evolution at DSA® anodes [J]. Rev. Sci. Instrum., 2016, 87: 085113
[27] Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution [J]. Energy Environ. Sci., 2016, 9: 1468
[1] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Jointis[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[2] LUO Zhu, LIU Jiale, WEI Anchao, HUANG Honglin, LI Xin, YU Yanzhao, ZHANG Mengfei. Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure[J]. 中国腐蚀与防护学报, 2025, 45(5): 1390-1398.
[3] LI Weipeng, LUO Kunjie, WANG Huisheng, CHEN Jiacheng, HAN Yaolei, PANG Xiaolu, PENG Qunjia, QIAO Lijie. Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[4] BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[5] FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[6] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[7] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[8] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[9] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[10] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[11] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[12] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[13] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[14] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[15] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
No Suggested Reading articles found!