|
|
Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode |
LIU Penghe1,2, XUE Lili1, XU Likun2( ), XIN Yonglei2, GUO Mingshuai2, ZHOU Shuai2, DUAN Tigang2 |
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
|
Cite this article:
LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1277-1288.
|
Abstract The anode of oxides-coated Ti-substrate plays an important role in the electro-chlorination system for biofouling prevention in seawater. The surface condition of Ti-substrate affects the performance of the anode. Herein, the effect of hydrogen pre-charging for the Ti-substrate on the microstructure and electrochemical properties of Ti/RuO2-IrO2-TiO2 anode was studied using surface analysis methods like SEM, XRD, and electrochemical techniques such as CV, EIS, potentiodynamic polarization measurement, and accelerated life test. The results show that a surface layer composed of hydrides of TiH1.5 and TiH2 is formed on the surface of Ti-substrate after being charged with hydrogen, which reduces the corrosion resistance of Ti substrate. As the current density for hydrogen charging increases, the oxide anode presents more large cracks while the porosity of the oxide coating increased, which enhances the electrochemically active surface area and electrocatalytic activity of the oxide anode for chlorine evolution reaction, but lowers the electrochemical stability of the anode. When the charging current density rises to 500 mA/cm2, on the contrary, the electrochemical activity of the oxide anode is decreased somewhat while the stability of the anode is improved to some extent.
|
Received: 25 December 2024
32134.14.1005.4537.2024.410
|
|
Fund: Exchange Projects at the 10th Regular Session of Scientific and Technological Cooperation Committee of China and Croatia (10-2)(10-2) |
Corresponding Authors:
XU Likun, E-mail: xulk@sunrui.net
|
[1] |
Xu L K, Sun M X. Electrochemical Protection Technology for Marine Ships [M]. Beijing: National Defense Industry Press, 2022
|
|
许立坤, 孙明先. 船舶电化学保护技术 [M]. 北京: 国防工业出版社, 2022
|
[2] |
Li C Y, Zhang G F, Fu H T. Development and application of electrolyzing seawater antifouling technique [J]. Dev. Appl. Mater., 1996, (1): 38
|
|
李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用 [J]. 材料开发与应用, 1996, (1): 38
|
[3] |
Trasatti S. Electrocatalysis: Understanding the success of DSA® [J]. Electrochim. Acta, 2000, 45: 2377
|
[4] |
Hine F, Yasuda M, Noda T, et al. Electrochemical behavior of the oxide-coated metal anodes [J]. J. Electrochem. Soc., 1979, 126: 1439
|
[5] |
Zhao F, Wang D W, Guo Q Z, et al. Performance study of RGO-CNTs hybrid material modified RuO2-IrO2-SnO2/Ti anode [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 787
|
|
赵 菲, 王东伟, 郭泉忠 等. RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 787
|
[6] |
Pouladvand I, Asl S K, Hoseini M G, et al. Characterization and electrochemical behavior of Ti/TiO2-RuO2-IrO2-SnO2 anodes prepared by sol-gel process [J]. J. Sol-Gel. Sci. Technol., 2019, 89: 553
|
[7] |
Zeng Y, Chen K N, Wu W, et al. Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction [J]. Ceram. Int., 2007, 33: 1087
|
[8] |
Hoseinieh S M, Ashrafizadeh F, Maddahi M H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions [J]. J. Electrochem. Soc., 2010, 157: E50
|
[9] |
Kameyama K, Tsukada K, Yahikozawa K, et al. Surface characterization of RuO2‐IrO2‐TiO2 coated titanium electrodes [J]. J. Electrochem. Soc., 1994, 141: 643
|
[10] |
Takasu Y, Sugimoto W, Nishiki Y, et al. Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes [J]. J. Appl. Electrochem., 2010, 40: 1789
|
[11] |
Panić V, Dekanski A, Mišković-stanković V B, et al. On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure [J]. J. Electroanal. Chem., 2005, 579: 67
|
[12] |
Chu L Y, Xu L K, Wu L B, et al. Effect of oxalic acid etching on morphology and electrocatalytic activity of oxide anodes [J]. Acta Metall. Sin., 2005, 41: 763
|
|
初立英, 许立坤, 吴连波 等. 草酸浸蚀对氧化物阳极形貌及电催化性能的影响 [J]. 金属学报, 2005, 41: 763
|
[13] |
Baronetto D, Kodintsev I M, Trasatti S. Origin of ohmic losses at Co3O4/Ti electrodes [J]. J. Appl. Electrochem., 1994, 24: 189
|
[14] |
Shao D, Yan W, Li X L, et al. A highly stable Ti/TiH x /Sb-SnO2 anode: preparation, characterization and application [J]. Ind. Eng. Chem. Res., 2014, 53: 3898
|
[15] |
Wu S, Wang J L, Wang X B, et al. Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning [J]. Mater. Res. Bull., 2024, 171: 112605
|
[16] |
Li J W, Li X C, Sui M L. Formation mechanism of hydride precipitation in commercially pure titanium [J]. J. Mater. Sci. Technol., 2021, 81: 108
doi: 10.1016/j.jmst.2021.01.009
|
[17] |
Wang Q Q, An X D, Zhu T, et al. Effect of electrochemical hydrogen charging on defect structure in titanium [J]. J. Alloy. Compd., 2021, 885: 160909
|
[18] |
Zhang W J, Yang F, Chen C P. Mechanical properties and hydrogen diffusion analysis of titanium alloy microstructure [J]. Dev. Appl. Mater., 2023, 38(3): 43
|
|
张文娟, 杨 帆, 陈超鹏. 钛合金微结构力学性能和氢扩散分析 [J]. 材料开发与应用, 2023, 38(3): 43
|
[19] |
Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions [J]. Thin Solid Films, 2016, 598: 260
|
[20] |
Wu W, Liu J, Liu Z Y, et al. Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater [J]. J. Electroanal. Chem., 2018, 822: 23
|
[21] |
Liu S P, Zhang Z, Xia J, et al. Effect of hydrogen precharging on mechanical and electrochemical properties of pure titanium [J]. Adv. Eng. Mater., 2020, 22: 1901182
|
[22] |
Peng W S, Xing S H, Qian Y, et al. Effect of flowing seawater on corrosion characteristics of passivation film on TA2 pure-Ti pipes [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1038
|
|
彭文山, 邢少华, 钱 峣 等. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1038
doi: 10.11902/1005.4537.2023.292
|
[23] |
Takasu Y, Onoue S, Kameyama K, et al. Preparation of ultrafine RuO2-IrO2-TiO2 oxide particles by a sol-gel process [J]. Electrochim. Acta, 1994, 39: 1993
|
[24] |
Ardizzone S, Trasatti S. Interfacial properties of oxides with technological impact in electrochemistry [J]. Adv. Colloid Interface Sci., 1996, 64: 173
|
[25] |
Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes [J]. Electrochim. Acta, 1990, 35: 263
|
[26] |
Silva J F, Dias A C, Araújo P, et al. Electrochemical cell design for the impedance studies of chlorine evolution at DSA® anodes [J]. Rev. Sci. Instrum., 2016, 87: 085113
|
[27] |
Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution [J]. Energy Environ. Sci., 2016, 9: 1468
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|