Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 296-306    DOI: 10.11902/1005.4537.2024.218
Current Issue | Archive | Adv Search |
Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment
FAN Jiajun1, DONG Lijin1(), MA Cheng2, ZHANG Ziyu3, MING Hongliang3, WEI Boxin3, PENG Qing4, WANG Qinying1
1.School of New energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2.Materials Technology Research Institute, HBIS Group, Shijiazhuang 050000, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article: 

FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 296-306.

Download:  HTML  PDF(5218KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen-natural gas blending is an important way to achieve long-distance, low-cost, and large-scale transportation of hydrogen energy. However, hydrogen-induced fatigue damage of pipelines may occur due to the simultaneous presence of fatigue loading and hydrogen, hence, seriously threatening the service safety of hydrogen-blended natural gas pipelines. Therefore, studying the role of hydrogen in pipeline steel and clarifying the mechanisms and influencing factors of hydrogen-assisted fatigue crack growth (HA-FCG) of pipeline steel can provide a basis for optimizing the performance and conducting risk assessment of HA-FCG of pipeline steel. In this paper, research progress on HA-FCG of pipeline steels in hydrogen-blended natural gas environment was summarized. Firstly, the mechanisms and models of HA-FCG were introduced. Secondly, the effect of microstructure, welding, load and service environment on HA-FCG of pipeline steels in hydrogen-blended natural gas environment was reviewed. Finally, the research directions of this field in future were discussed.

Key words:  pipeline steel      hydrogen-natural gas blending      hydrogen-assisted fatigue crack growth      microstructure     
Received:  22 July 2024      32134.14.1005.4537.2024.218
TG172  
Fund: National Natural Science Foundation of China(52474082);National Natural Science Foundation of China(52001264)
Corresponding Authors:  DONG Lijin, E-mail: ljdong89@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.218     OR     https://www.jcscp.org/EN/Y2025/V45/I2/296

Fig.1  Schematic illustration of mechanism models of HA-FCG: (a) ductile fatigue striation formation model in air, (b) hesfcg model, (c) hydrogen-induced cyclic cleavage model, (d) hydrogen-induced void coalescence model, (e) brittle striation formation model[23]
Fig.2  Different stages of hydrogen diffusion within pipeline steel: (a) hydrogen is dissociated into h atoms in the pipelines and adsorbed to the inner surface of the metals, (b) atoms or regenerated hydrogen molecules degrade metal lattices, (c) hydrogen breaks the lattices and evolves into micro-crack propagation, (d) macroscopically visible cracks appear[30]
Fig.3  Schematic illustrations of the two fatigue crack propagation modes through pearlite grains under the presence of gaseous hydrogen[57]: (a) cracking-mode transecting ferrite/cementite lamellar aligned nearly perpendicular to the crack-plane (pearlite tearing, pt), (b) delamination-type fracture along the ferrite/cementite interfaces lying almost parallel to the crack-plane (pearlite delamination, PD)
Fig.4  Relationship Curve between FCGR and ΔK in air and different hydrogen pressure: (a) FCGR data for API X100 steel, (b) FCGR data for API X52 steel, (c) FCGR data for X80 steel[38,91]
1 Liu F, Yang H W, Deng F J. Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas [J]. Oil Gas Storage Transp., 2024, 43: 289
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X65管线钢的氢脆行为 [J]. 油气储运, 2024, 43: 289
2 Wei R C, Yang Z W, Chen Y F, et al. Study on the influence of gas phase impurities on hydrogen embrittlement sensitivity of L245 pipeline steel in hydrogen environment [J]. Mech. Eng., 2024: 1, doi: 10.6052/1000-0879-24-118
魏仁超, 杨志文, 陈迎锋 等. 气相杂质对临氢环境中L245管线钢氢脆敏感性的影响研究 [J]. 力学与实践, 2024: 1, doi: 10.6052/1000-0879-24-118
3 Wu X, Tan M Q, Zhang Q R, et al. Advancements in investigating crack propagation in pipeline steel base metal and welded joints exposed to hydrogen-blended natural gas [J]. J. Saf. Environ., 2024, 24(8): 3063
吴 瑕, 谭旻倩, 张沁蕊 等. 掺氢天然气管道本体及焊缝裂纹扩展研究进展 [J]. 安全与环境学报, 2024, 24: 3063
4 Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2022, 42: 1301
邱 玥, 周苏洋, 顾 伟 等. “ 碳达峰、碳中和”目标下混氢天然气技术应用前景分析 [J]. 中国电机工程学报, 2022, 42: 1301
5 Liu B, Bi Z Y, Li Z X, et al. Research progress in pure hydrogen and hydrogen doped transportation pipes at home and abroad [J]. Welded Pipe Tube, 2024, 47(7): 8
刘 斌, 毕宗岳, 李中祥 等. 国内外纯氢及掺氢输送管材研究进展 [J]. 焊管, 2024, 47(7): 8
6 Zhang Y W, Gu C H, Li Y H, et al. Effects of hydrogen in synthetic natural gas on mechanical properties of X80 steel spiral welded pipe [J]. Pressure Vessel Technol., 2020, 37(3): 1
张一苇, 顾超华, 李炎华 等. 煤制天然气中氢对X80钢螺旋焊管力学性能的影响 [J]. 压力容器, 2020, 37(3): 1
7 Wu W, Li Y, Ji L K, et al. Progress in research on fatigue behavior of pipeline steel [J]. Welded Pipe Tube, 2009, 32(8): 31
武 威, 李 洋, 吉玲康 等. 管线钢疲劳行为研究进展 [J]. 焊管, 2009, 32(8): 31
8 Zhong Y, Shan Y Y, Huo C Y, et al. Progress in research on fatigue characteristics of pipeline steel [J]. Mater. Rev., 2003, 17(8): 11
钟 勇, 单以银, 霍春勇 等. 管线钢疲劳特性研究进展 [J]. 材料导报, 2003, 17(8): 11
9 Gou J X, Nie R Y, Xing X, et al. Fatigue crack growth model of X80 pipeline steel in hydrogen environment for quantification of hydrogen pressure effect [J]. Oil Gas Storage Transp., 2023, 42: 754
苟金鑫, 聂如煜, 邢 潇 等. 临氢X80管线钢量化氢压作用的疲劳裂纹扩展模型 [J]. 油气储运, 2023, 42: 754
10 Wu Y T, Qiao G Y, Xu K, et al. Effect of hydrogen on tensile and fatigue properties of ferritic/bainite dual-phase X70 pipeline steel [J]. Trans. Mater. Heat Treat., 2023, 44(9): 114
吴英铜, 乔桂英, 徐 凯 等. 氢对铁素体/贝氏体双相X70管线钢拉伸及疲劳性能的影响 [J]. 材料热处理学报, 2023, 44(9): 114
11 Nanninga N, Slifka A, Levy Y, et al. A review of fatigue crack growth for pipeline steels exposed to hydrogen [J]. J. Res. Natl. Inst. Stand. Technol., 2010, 115: 437
pmid: 27134796
12 Richards F. Failure analysis of a natural gas pipeline rupture [J]. J. Fail. Anal. Prev., 2013, 13: 653
13 Li S Y, Quan J, Liu Y, et al. Prevention of failure accidents of gas transmission pipelines in high consequence areas [J]. China Pet. Chem. Stand. Qual., 2022, 42(19): 65
李枢一, 全 佳, 刘 颜 等. 高后果区输气管道失效事故防范 [J]. 中国石油和化工标准与质量, 2022, 42(19): 65
14 Wang X W, Luo J H, Yuan H W, et al. Hazard analysis on the offshore natural gas pipelines fatigue failure leakage [J]. Fire Sci. Technol., 2018, 37: 729
王小完, 骆济豪, 袁宏伟 等. 海底天然气管道疲劳破坏泄漏灾害研究 [J]. 消防科学与技术, 2018, 37: 729
15 Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Ber. Bunsen-Ges. Phys. Chem., 1972, 76: 848
16 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
17 Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview [J]. Acta Mater., 2019, 165: 722
18 Lynch S P. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
19 Röthig M, Hoschke J, Tapia C, et al. A review of gas phase inhibition of gaseous hydrogen embrittlement in pipeline steels [J]. Int. J. Hydrog. Energy, 2024, 60: 1239
20 Murakami Y, Kanezaki T, Mine Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels [J]. Metall. Mater. Trans., 2008, 39A: 1327
21 Marrow T J, Cotterill P J, King J E. Temperature effects on the mechanism of time independent hydrogen assisted fatigue crack propagation in steels [J]. Acta Metall. Mater., 1992, 40: 2059
22 Nishikawa H A, Oda Y, Noguchi H. Investigation of the mechanism for brittle-striation formation in low carbon steel fatigued in hydrogen gas [J]. J. Solid Mech. Mater. Eng., 2011, 5: 370
23 Birenis D, Ogawa Y, Matsunaga H, et al. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake [J]. Acta Mater., 2018, 156: 245
24 Dmytrakh I M, Leshchak R L, Syrotyuk A M, et al. Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 6401
25 Entezari E, Velázquez J L G, Mohtadi-Bonab M A, et al. Experimental observations of nucleation and crack growth paths of hydrogen-induced cracking in pipeline steel [J]. Eng. Fail. Anal., 2023, 154: 107650
26 Peng Z X, Cao C S, Huang F, et al. Effect of slow strain rates on the hydrogen migration and different crack propagation modes in pipeline steel [J]. Steel Res. Int., 2023, 94: 2300070
27 Shang J, Guo J X, Xing B H, et al. CO2 effect on the fatigue crack growth of X80 pipeline steel in hydrogen-enriched natural gas: experiment vs DFT [J]. Int. J. Hydrog. Energy, 2024, 66: 636
28 Cai L X, Bai G Q, Gao X F, et al. Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels [J]. Mater. Res. Express, 2022, 9: 046512
29 Zheng T S, Chen N Z. A cyclic cohesive zone model for predicting hydrogen assisted fatigue crack growth (FCG) of subsea pipeline steels [J]. Int. J. Fatigue, 2023, 173: 107707
30 Wu X, Zhang H F, Yang M, et al. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels [J]. Int. J. Hydrog. Energy, 2022, 47: 8071
31 Golahmar A, Kristensen P K, Niordson C F, et al. A phase field model for hydrogen-assisted fatigue [J]. Int. J. Fatigue, 2022, 154: 106521
32 Li P D, Li W D, Li B, et al. A review on phase field models for fracture and fatigue [J]. Eng. Fract. Mech., 2023, 289: 109419
33 Cui C J, Bortot P, Ortolani M, et al. Computational predictions of hydrogen-assisted fatigue crack growth [J]. Int. J. Hydrog. Energy, 2024, 72: 315
34 Lo Y S, Borden M J, Ravi-Chandar K, et al. A phase-field model for fatigue crack growth [J]. J. Mech. Phys. Solids, 2019, 132: 103684
35 De Francisco U, Larrosa N O, Peel M J. Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted cracking [J]. Eng. Fract. Mech., 2022, 260: 108167
36 Fernández-Sousa R, Betegón C, Martínez-Pañeda E. Cohesive zone modelling of hydrogen assisted fatigue crack growth: The role of trapping [J]. Int. J. Fatigue, 2022, 162: 106935
37 Amaro R L, Rustagi N, Findley K O, et al. Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen [J]. Int. J. Fatigue, 2014, 59: 262
38 Mohtadi-Bonab M A. Effect of different parameters on hydrogen affected fatigue failure in pipeline steels [J]. Eng. Fail. Anal., 2022, 137: 106262.
39 Wang H L, Ming H L, Wang J Q, et al. Hydrogen permeation behavior at different positions in the normal direction of X42 and X52 pipeline steels [J]. Int. J. Hydrog. Energy, 2024, 72: 1105
40 Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrog. Energy, 2016, 41: 4185
41 Drexler E S, Slifka A J, Amaro R L, et al. Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 517
42 Zhao X H, Wang H, Liu G, et al. Research on the hydrogen assisted fatigue damage in X80 pipeline steel welded joint [J]. Mater. Today Commun., 2022, 31: 103524
43 Ronevich J A, D'Elia C R, Hill M R. Fatigue crack growth rates of X100 steel welds in high pressure hydrogen gas considering residual stress effects [J]. Eng. Fract. Mech., 2018, 194: 42
44 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
45 Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
46 Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
47 Wang M M, Gao X H, Song L Y, et al. Hydrogen trapping and electrochemical corrosion behavior of V-N microalloyed X80 pipeline steels consisting of acicular ferrite and polygonal ferrite [J]. J. Iron Steel Res. Int., 2022, 29: 1683
48 Cheng W S, Song B, Mao J H. Effect of Ce content on the hydrogen induced cracking of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2023, 48: 15303
49 Li L F, Song B, Cheng J, et al. Effects of cooling processes on microstructure and susceptibility of hydrogen-induced cracking of X80 pipeline steel [J]. Mater. Corros., 2018, 69: 590
50 Mousavi Anijdan S H, Arab G, Sabzi M, et al. Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: influence of heat treatment and its subsequent microstructural changes [J]. J. Mater. Res. Technol., 2021, 15: 1
doi: 10.1016/j.jmrt.2021.07.118
51 Mousavi Anijdan S H, Sabzi M, Park N, et al. Sour corrosion performance and sensitivity to hydrogen induced cracking in the X70 pipeline steel: effect of microstructural variation and pearlite percentage [J]. Int. J. Pressure Vessels Piping, 2022, 199: 104759
52 Koren E, Yamabe J, Lu X, et al. Hydrogen diffusivity in X65 pipeline steel: desorption and permeation studies [J]. Int. J. Hydrog. Energy, 2024, 61: 1157
53 Kim J S, Lee Y H, Lee D L, et al. Microstructural influences on hydrogen delayed fracture of high strength steels [J]. Mater. Sci. Eng., 2009, 505A: 105
54 Tau L, Chan S L I. Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel [J]. Mater. Lett., 1996, 29: 143
55 Ogawa Y, Hino M, Nakamura M, et al. Pearlite-driven surface-cracking and associated loss of tensile ductility in plain-carbon steels under exposure to high-pressure gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2021, 46: 6945
56 Ronevich J A, Somerday B P, San Marchi C W. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels [J]. Int. J. Fatigue, 2016, 82: 497
57 Ogawa Y, Nishida H, Nakamura M, et al. Dual roles of pearlite microstructure to interfere/facilitate gaseous hydrogen-assisted fatigue crack growth in plain carbon steels [J]. Int. J. Fatigue, 2022, 154: 106561
58 Ogawa Y, Iwata K. Resistance of pearlite against hydrogen-assisted fatigue crack growth [J]. Int. J. Hydrogen Energy, 2022, 47: 31703
59 Wu C, Yan C Y, Zhang S L, et al. Research on hydrogen-induced induced cracking sensitivity of X80 pipeline steel under different heat treatments [J]. Materials, 2024, 17: 1953
60 Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, 528A: 4927
61 Huang F, Li X G, Liu J, et al. Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment [J]. Mater. Corros., 2012, 63: 59
62 Entezari E, Velázquez J L G, López D R, et al. An experimental and statistical study on the characteristics of non-metallic inclusions that serve as hydrogen-induced crack nucleation sites in pipeline steel [J]. Eng. Fail. Anal., 2023, 154: 107695
63 Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 17671
64 Zhu Y S, Zhang J M, Wu F J, et al. Analysis and prediction of nonmetallic inclusions and their effect on hydrogen induced cracking behavior of X65 acid-resistant pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 169
朱延山, 张继明, 武凤娟 等. X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测 [J]. 中国腐蚀与防护学报, 2022, 42: 169
doi: 10.11902/1005.4537.2021.015
65 Domizzi G, Anteri G, Ovejero-Garcı́a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci., 2001, 43: 325
66 Du X S, Cao W B, Wang C D, et al. Effect of microstructures and inclusions on hydrogen-induced cracking and blistering of A537 steel [J]. Mater. Sci. Eng., 2015, 642A: 181
67 Wang B, Zhou C, Li L J, et al. Resistance to hydrogen induced corrosion cracking of weld joint of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 237
王 斌, 周 翠, 李良君 等. X100管线钢焊接接头抗HIC性能研究 [J]. 中国腐蚀与防护学报, 2014, 34: 237
68 Qin W, Thomas A, Cheng Z Q, et al. Key factors affecting hydrogen trapping at the inclusions in steels: a combined study using microprint technique and theoretical modeling [J]. Corros. Sci., 2022, 200: 110239
69 Mostafijur Rahman K M, Mohtadi-Bonab M A, Ouellet R, et al. Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions [J]. Int. J. Pressure Vessels Piping, 2019, 173: 147
70 Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
71 Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
72 Zhang S Q, Huang Y H, Sun B T, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels [J]. Mater. Sci. Eng., 2015, 626A: 136
73 Giarola J M, Calderón-Hernández J W, Quispe-Avilés J M, et al. Hydrogen-induced cracking and corrosion behavior of friction stir welded plates of API 5L X70 pipeline steel [J]. Int. J. Hydrog. Energy, 2021, 46: 28166
74 Gan L J, Huang F, Zhao X Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrog. Energy, 2018, 43: 2293
75 Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
76 Gavras A G, Lados D A, Donald J K. A unified method of design for fatigue crack growth resistance in structural materials [J]. Int. J. Fatigue, 2013, 47: 58
77 Ronevich J A, Somerday B P. Assessing gaseous hydrogen assisted fatigue crack growth susceptibility of pipeline steel weld fusion zones and heat affected zones [J]. Mater. Perform. Charact., 2016, 5: 290
78 Huang G, Zheng J Y, Meng B, et al. Mechanical properties of X70 welded joint in high-pressure natural gas/hydrogen mixtures [J]. J. Mater. Eng. Perform., 2020, 29: 1589
doi: 10.1007/s11665-020-04680-6
79 Olden V, Alvaro A, Akselsen O M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulations [J]. Int. J. Hydrog. Energy, 2012, 37: 11474
80 Nguyen T T, Beak U B, Park J, et al. Hydrogen environment assisted cracking in X70 welding heat-affected zone under a high-pressure hydrogen gas [J]. Theor. Appl. Fract. Mech., 2020, 109: 102746
81 Amaro R L, White R M, Looney C P, et al. Development of a Model for Hydrogen-Assisted Fatigue Crack Growth of Pipeline Steel1 [J]. J. Pressure Vessel Technol., 2018, 140: 021403.
82 Ronevich J A, Song E J, Feng Z L, et al. Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress [J]. Eng. Fract. Mech., 2020, 228: 106846
83 Cialone H J, Holbrook J H. Effects of gaseous hydrogen on fatigue crack growth in pipeline steel [J]. Metall. Mater. Trans., 1985, 16A: 115
84 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
85 Fassina P, Brunella F, Lazzari L, et al. Fatigue behavior of pipeline steel under hydrogen environment and low temperature [J]. Procedia Eng., 2011, 10: 3345
86 Fassina P, Brunella M F, Lazzari L, et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels [J]. Eng. Fract. Mech., 2013, 103: 10
87 Shinko T, Hénaff G, Halm D, et al. Hydrogen-affected fatigue crack propagation at various loading frequencies and gaseous hydrogen pressures in commercially pure iron [J]. Int. J. Fatigue, 2019, 121: 197
88 Alvaro A, Wan D, Olden V, et al. Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt%Si alloy and a X70 pipeline steel [J]. Eng. Fract. Mech., 2019, 219: 106641
89 Macadre A, Artamonov M, Matsuoka S, et al. Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station [J]. Eng. Fract. Mech., 2011, 78: 3196 Struct. Integr., 2016, 2: 525
90 Yamabe J, Yoshikawa M, Matsunaga H, et al. Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen [J]. Struct. Integr., 2016, 2: 525
91 An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
92 Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
93 León-Cázares F D, Agnani M, Ronevich J, et al. Effects of hydrogen partial pressure on crack initiation and growth rate in vintage X52 steel [J]. Int. J. Hydrog. Energy, 2024, doi: 10.1016/j.ijhydene.2024.02.292
94 Dadfarnia M, Sofronis P, Brouwer J, et al. Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen [J]. Int. J. Hydrog. Energy, 2019, 44: 10808
95 Staykov A, Yamabe J, Somerday B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface [J]. Int. J. Quantum Chem., 2014, 114: 626
96 Sun Y H, Ren Y N, Cheng Y F. Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling [J]. Int. J. Hydrog. Energy, 2022, 47: 41069
97 Staykov A, Komoda R, Kubota M, et al. Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron [J]. J. Phys. Chem., 2019, 123C: 30265
98 Wang T, Tian X X, Yang Y, et al. Co-adsorption and mutual interaction of nCO + mH2 on the Fe(110) and Fe(111) surfaces [J]. Catal. Today, 2016, 261: 82
99 Zhou C S, Zhou H B, Zhang L. The impact of impurity gases on the hydrogen embrittlement behavior of pipeline steel in high-pressure H2 environments [J]. Materials, 2024, 17: 2157
100 Zhang R, Yuan C, Liu C W, et al. Effects of natural gas impurities on hydrogen embrittlement susceptibility and hydrogen permeation of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 159: 108111
[1] WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[4] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[5] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[6] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[7] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[8] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[9] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[10] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[11] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[12] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[13] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[14] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[15] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
No Suggested Reading articles found!