Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1289-1299    DOI: 10.11902/1005.4537.2024.390
Current Issue | Archive | Adv Search |
Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions
CAI Ketao1,2, JI Lei3, ZHANG Zhen3(), FENG Qiang1,2, DENG Weilin1,2, LAN Guihong4, HE Sha1,2, ZHAO Zhanyong3, BAI Peikang3
1 Sichuan Kete Testing Technology Co., Ltd., Guanghan 618300, China
2 Safety and Environmental Quality Supervision and Testing Institute of Chuanqing Drilling Engineering Co., Ltd., Guanghan 618300, China
3 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
4 School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
Cite this article: 

CAI Ketao, JI Lei, ZHANG Zhen, FENG Qiang, DENG Weilin, LAN Guihong, HE Sha, ZHAO Zhanyong, BAI Peikang. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1289-1299.

Download:  HTML  PDF(15966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Mg-Gd-Y-Zn-Zr alloy in NaCl and Na2SO4 solutions was studied using hydrogen evolution measurement, mass loss measurement, cathodic polarization curve, electrochemical impedance spectroscopy and corrosion morphology observation. The results indicated that the corrosion rate of Mg-Gd-Y-Zn-Zr alloy in 0.6 mol/L NaCl solution was much higher than that in 0.6 mol/L Na2SO4 solution. A scale of needle-like oxides rapidly formed on the surface of Mg-Gd-Y-Zn-Zr alloy in NaCl solution. As immersion progressed, the oxide scale thickened and a large number of micro-cracks appeared. In the initial stage of Mg-Gd-Y-Zn-Zr alloy soaking in Na2SO4 solution, the oxide scale was relatively thin. With the increasing soaking time, the oxide scale exhibited a flocculent characteristic, and significant sulfur enrichment was observed in the corrosion products scale. The corrosion morphology observation showed that the α-Mg matrix of Mg-Gd-Y-Zn-Zr alloy was preferentially dissolved in NaCl solution with deeper and localized corrosion characteristics. In Na2SO4 solution, the second phase preferentially corroded with shallower and relatively uniform corrosion. Based on the above results, the influence mechanism of Cl- and SO42- on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy was discussed from the aspects of oxide scale formation and galvanic corrosion.

Key words:  rare-earth Mg alloy      corrosion behavior      second phase      oxide scale      galvanic corrosion     
Received:  02 December 2024      32134.14.1005.4537.2024.390
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52105409);Fundamental Research Program of Shanxi Province(20210302124042)
Corresponding Authors:  ZHANG Zhen, E-mail: zzhang14s@alum.imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.390     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1289

Fig.1  SEM image (a) and magnified image (b) of the surface of cast Mg-10Gd-4Y-2Zn-0.5Zr alloy, and EDS elemental mapping results (c)
SampleMgGdYZnZr
Point 172.814.35.37.50.1
Point 280.69.33.96.10.1
Point 396.42.11.00.40.1
Table 1  Compositions of the marked points1, 2 and 3 in Fig.1
Fig.2  Hydrogen evolution amounts (a), hydrogen evolution rates (b) and average corrosion rates (c) of Mg-10Gd-4Y-2Zn-0.5Zr alloy during immersion in 0.6 mol/L NaCl solution and 0.6 mol/L Na2SO4 solution
Fig.3  Cathodic polarization curves of Mg-10Gd-4Y-2Zn-0.5Zr alloy after immersion for 1-24 h in 0.6 mol/L NaCl solution (a) and 0.6 mol/L Na2SO4 solution (b)
Fig.4  Histograms of Icorr of Mg-10Gd-4Y-2Zn-0.5Zr alloy during immersion for different time in 0.6 mol/L NaCl solution and 0.6 mol/L Na2SO4 solution
Fig.5  Nyquist (a, d), Bode module (b, e) and Bode phase angle (c, f) plots of Mg-10Gd-4Y-2Zn-0.5Zr alloy immersed for different time in 0.6 mol/L NaCl solution (a-c) and 0.6 mol/L Na2SO4 solution (d-f)
Fig.6  Equivalent circuit diagrams for EIS of Mg-10Gd-4Y-2Zn-0.5Zr alloy during immersion in 0.6 mol/L NaCl solution (a) and 0.6 mol/L Na2SO4 solution (b)
Fig.7  Rp vs. time curves for Mg-10Gd-4Y-2Zn-0.5Zr alloy during immersion in two solutions
Fig.8  Surface morphologies of Mg-10Gd-4Y-2Zn-0.5Zr alloy immersed in 0.6 mol/L NaCl solution (a-d) and 0.6 mol/L Na2SO4 solution (e-h) for 1 h (a, e), 3 h (b, f), 6 h (c, g) and 24 h (d, h)
Fig.9  Cross-sectional morphologies of Mg-10Gd-4Y-2Zn-0.5Zr alloy immersed in 0.6 mol/L NaCl solution (a, b, e) and 0.6 mol/L Na2SO4 solution (c, d, f) for 24 h (a, c), and corresponding EDS element mappings (b, d, e, f)
Fig.10  SEM surface morphologies of Mg-10Gd-4Y-2Zn-0.5Zr alloy immersed in 0.6 mol/L NaCl solution (a-d) and 0.6 mol/L Na2SO4 solution (e-h) for 1 h (a, e), 6 h (b, f), 12 h (c, g) and 24 h (d, h), and EDS element mappings of the samples immersed for 24 h (i, j)
Fig.11  Cross-sectional morphologies of Mg-10Gd-4Y-2Zn-0.5Zr alloy after immersion in 0.6 mol/L NaCl solution (a, b) and 0.6 mol/L Na2SO4 solution (c, d) for 24 h
[1] Zhang J H, Zhang L, Leng Z, et al. Experimental study on strengthening of Mg-Li alloy by introducing long-period stacking ordered structure [J]. Scrip. Mater., 2013, 68: 675
[2] King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
[3] Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
[4] Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications [J]. Corros. Sci., 2014, 86: 1
[5] Li S X, Bacco A C, Birbilis N, et al. Passivation and potential fluctuation of Mg alloy AZ31B in alkaline environments [J]. Corros. Sci., 2016, 112: 596
[6] Yang Y, Peng X D, Wen H M, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy [J]. Mater. Sci. Eng., 2014, 611A: 1
[7] Chen J, Song Y W, Shan D Y, et al. In situ growth process of Mg-Al Hydrotalcite conversion film on AZ31 Mg alloy [J]. J. Mater. Sci. Technol., 2015, 31: 384
doi: 10.1016/j.jmst.2014.09.016
[8] Zhang C Y, Chen Y Y, Yu B X, et al. Effects of nucleation pretreatment on corrosion resistance of conversion coating on magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. Corros. Commun., 2023, 10: 69
[9] Yin Z, Chen Y, Yan H, et al. Effects of the second phases on corrosion resistance of AZ91-xGd alloys treated with ultrasonic vibration [J]. J. Alloy. Compd., 2019, 783: 877
[10] Xu K, Wang B J, Sun J. Research progress on the influence of anions in typical corrosive media on corrosion behavior of magnesium alloys [J]. Mater. Prot., 2022, 12: 166
许 凯, 王保杰, 孙 杰. 典型腐蚀介质中阴离子对镁合金腐蚀行为影响的研究进展 [J]. 材料保护, 2022, 12: 166
[11] Liu H G, Cao F Y, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35: 2003
doi: 10.1016/j.jmst.2019.05.001
[12] Zhao C, Cao F Y, Song G L. Corrosivity of haze constituents to pure Mg [J]. J. Magnes. Alloy., 2020, 8: 150
[13] Gu J X, Bai Z P, Li W F, et al. Chemical composition of PM2.5 during winter in Tianjin, China [J]. Particuology, 2011, 9: 215
[14] Ge F, Cui Z Y, Liu Y, et al. Influence of ammonium sulfate on the corrosion behavior of AZ31 magnesium alloy in chloride environment [J]. J. Magnes. Alloy., 2024, 12: 1082
[15] Yang L J, Wei Y H, Hou L F, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions [J]. Corros. Sci., 2010, 52: 345
[16] Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J]. J.Alloy. Compd., 2010, 496: 500
[17] Gururaj Acharya M, Nityananda Shetty A. The corrosion behavior of AZ31 alloy in chloride and sulfate media-a comparative study through electrochemical investigations [J]. J. Magnes. Alloy., 2019, 7: 98
doi: 10.1016/j.jma.2018.09.003
[18] Wang H X, Song Y W, Shan D Y, et al. Effects of corrosive media on the localized corrosion forms of Mg-3Zn alloy [J]. Corros. Commun., 2021, 2: 24
[19] Wu K G, Ito K, Enoki M. A comparative investigation of corrosion behavior and the concurrent acoustic emission of AZ31 Mg alloy under NaCl and Na2SO4 solution droplets [J]. Mater. Trans., 2024, 65: 587
[20] Feng B J, Liu G N, Yang P X, et al. Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution [J]. J. Magnes. Alloy., 2022, 10: 1598
[21] Chang F C, Song Y W, Dong K H, et al. Formation mechanisms of product film on high corrosion resistant EW75 Mg alloy: The effect of corrosive media [J]. Mater. Today Commun., 2025, 42: 111109
[22] Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519
doi: 10.11902/1005.4537.2023.185
[23] Shi Z M, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corros. Sci., 2010, 52: 579
[24] Ding Z B, Zhao Y H, Lu R P, et al. Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys [J]. Trans. Nonferr. Met. Soc. China, 2019, 29: 722
[25] Zhang K, Wang C, Liu S, et al. New insights on corrosion behavior of aging precipitates in dilute Mg-Al-Ca alloy by experiments and first-principles calculations [J]. Corros. Sci., 2023, 220: 111254
[26] Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
[27] Wang L Q, Snihirova D, Deng M, et al. Revealing physical interpretation of time constants in electrochemical impedance spectra of Mg via Tribo-EIS measurements [J]. Electrochim. Acta, 2022, 404: 139582
[28] Zhang Z, Ji L, Wang S Y, et al. Revealing corrosion behavior and mechanism of cold metal transfer-wire arc additive manufactured Mg-10Gd-4Y-2Zn-0.5Zr alloy in 3.5 wt%NaCl [J]. Corros. Sci., 2024, 237: 112349
[29] Zhang Z, Wang L Q, Zhang R Z, et al. Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution [J]. J. Mater. Res. Technol., 2022, 18: 416
[30] Leleu S, Rives B, Bour J, et al. On the stability of the oxides film formed on a magnesium alloy containing rare-earth elements [J]. Electrochim. Acta, 2018, 290: 586
[31] Zhou W Q, Shan D Y, Han E H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 329
[32] Li C Q, Li X, Ke X T, et al. Enhancing corrosion resistance of Mg-Li-Zn-Y-Mn alloy containing long period stacking ordered (LPSO) structure through homogenization treatment [J]. Corros. Sci., 2024, 228: 111829
[33] Pérez P, Cabeza S, Garcés G, et al. Influence of long period stacking ordered phase arrangements on the corrosion behaviour of extruded Mg97Y2Zn1 alloy [J]. Corros. Sci., 2016, 107: 107
[34] Pinto R, Ferreira M G S, Carmezim M J, et al. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution [J]. Electrochim. Acta, 2011, 56: 1535
[35] Xie J S, Zhang Z, Dong H, et al. Insights into corrosion behavior of Mg alloys containing long-period stacking ordered structure in chloride and sulfate media [J]. Corros. Sci., 2025, 243: 112592
[36] Wang J, Li Y Y, Yuan Y, et al. Tailoring the corrosion behavior and mechanism of Mg-Gd-Zn alloys via Sc microalloying [J]. J. Mater. Res. Technol., 2023, 27: 5010
[1] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[2] FAN Shilin, DU Juan, YANG Shaodan, ZHOU Yanjun, SONG Kexing, ZHANG Guoshang, YUE Pengfei, YANG Ran, WANG Xiaojun. Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
[3] FANG Huanjie, ZHOU Peng, YU Jianhao, WANG Yongxin, YU Bo, PU Jibin. Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[4] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[5] DUAN Jingmin, DONG Yong, MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[6] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[7] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[8] LEI Aijia, DAI Xun, XU Jiangtao, DENG Ruiju, HUANG Xuefei. Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[9] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[10] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[11] PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[12] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[13] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[14] YANG Haiyun, LIU Chunquan, XIONG Fen, CHEN Minna, XIE Yuelin, PENG Longsheng, SUN Sheng, LIU Haizhou. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[15] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
No Suggested Reading articles found!