Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 388-396    DOI: 10.11902/1005.4537.2024.278
Current Issue | Archive | Adv Search |
Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel
CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi()
College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
Cite this article: 

CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 388-396.

Download:  HTML  PDF(6576KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hydrogen permeation behavior of X80 pipeline steel with different thicknesses was studied by means of electrochemical hydrogen permeation test, and the influence of hydrogen pre-charging time on the mechanical properties of X80 pipeline steel was also assessed via slow strain rate tensile test. Meanwhile, finite element analysis was used to simulate hydrogen concentration within the steels, which were hydrogen pre-charged for different times. The results indicate that as the thickness increases, the steady-state current density and steady-state hydrogen permeation flux of X80 pipeline steel decrease. Moreover, the penetration time and lag time of hydrogen diffusion increase, suggesting that the increase in steel thickness enhances both the quantity of hydrogen traps and the pathways for hydrogen diffusion of the steel. Additionally, pre-charging time significantly impacts the susceptibility to hydrogen embrittlement of the steel, resulting in a slight increase in yield strength and a notable decrease in elongation with the increasing pre-charging time. Macroscopic and microscopic fracture surface analyses reveal that steels subjected to in-situ hydrogen charging exhibit distinct brittle fracture characteristics. As the pre-charging time increases, the ductile fracture features diminishing, while the number of secondary cracks increased gradually, which may be attributed to the increased concentration of hydrogen atoms within the steel. The fitting results show that the internal hydrogen concentration is negatively correlated with the elongation and positively correlated with hydrogen embrittlement sensitivity.

Key words:  X80 pipeline steel      hydrogen permeation      in-situ hydrogen charging and stretching      hydrogen embrittlement sensitivity      finite element simulation     
Received:  30 August 2024      32134.14.1005.4537.2024.278
TG174  
Corresponding Authors:  ZHENG Shuqi, E-mail: zhengsq09@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.278     OR     https://www.jcscp.org/EN/Y2025/V45/I2/388

Fig.1  Metallographic structure of X80 pipeline steel
Fig.2  Sample size diagram (mm)
Fig.3  Electrochemical hydrogen permeation curves of X80 pipeline steel with different thicknesses
δ / mmI / μA·cm-2J / 10-10 mol·cm-2·s-1tb / stδ / sDeff / 10-6 cm2·s-1C0 / 10-5 mol·cm-3Nt / 1020 cm-3
1.086.078.922705463.052.922.4
1.556.435.8540010363.622.421.67
2.043.534.5177018293.642.481.69
2.533.533.48120027923.732.331.56
3.027.152.81225044953.342.531.9
Table 1  Kinetics parameters of hydrogen permeation of X80 pipeline steel with different thicknesses
Fig.4  Fitting results of the functional relationship between I (a)/tb (b) and sample thickness
Fig.5  Stress-strain curves of X80 pipeline steel with different pre-hydrogen charging times
Sampleσs / MPaσb / MPad / mmL / %HE
Air6156906.41025.64-
06276842.0178.0680.685
tb6306831.8647.4560.709
t6446651.5346.1360.761
Table 2  Tensile data of X80 pipeline steel
Fig.6  Macroscopic (a1-d1), side (a2-d2), central (a3-d3) and edge (a4-d4) fracture morphologies of X80 pipeline steel: (a1-a4) air, (b1-b4) 0, (c1-c4) tb, (d1-d4) t
Fig.7  Relation curve of displacement and plastic strain of the specimen during the SSRT
Fig.8  Hydrogen concentration distribution at the end of SSRT: (a) 0, (b) tb, (c) t
SampleHydrogen concentration / 10-6 mol·cm-3
CentralEdge
06.4615.38
tb9.2315.38
t13.8515.38
Table 3  Hydrogen concentration at the end of SSRT
Fig.9  Variation of elongation and hydrogen embrittlement sensitivity with hydrogen concentration
Fig.10  Fitting results of the functional relationship between LH (a) / HE (b) and hydrogen concentration
1 Yang T R, Zhao H L, Yu J G. Key component of future energy systems: hydrogen energy [J]. J. Chin. Ceram. Soc., 2024, 52: 1789
杨天让, 赵海雷, 余家国. 未来能源体系重要组成——氢能 [J]. 硅酸盐学报, 2024, 52: 1789
2 Li J F, Li J L, Wang Y S, et al. Research progress and development trends of key technologies for hydrogen energy storage and transportation [J]. Oil Gas Storage Trans., 2023, 42: 856
李敬法, 李建立, 王玉生 等. 氢能储运关键技术研究进展及发展趋势探讨 [J]. 油气储运, 2023, 42: 856
3 Gao Y, Zhu H J, Tang T, et al. Research status and analysis of hydrogen-blended natural gas transportation in natural gas pipelines [J]. Low-Carbon Chem. Chem. Eng., 2024, 49(3): 118
高 岳, 朱红钧, 唐 堂 等. 天然气管道掺氢输送研究现状与分析 [J]. 低碳化学与化工, 2024, 49(3): 118
4 Wang L, Xie Q Y, Chen J, et al. Numerical analysis of the effect of hydrogen doping ratio on gas transmission in low-pressure pipeline network [J]. Int. J. Hydrog. Energy, 2024, 73: 868
5 Xing X, Pang Z W, Zhang H, et al. Study of temperature effect on hydrogen embrittlement in X70 pipeline steel [J]. Corros. Sci., 2024, 230: 111939
6 Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
7 Yan C Y, Zhou Q W, Zhang H, et al. Investigation of hydrogen-induced cracking susceptibility of X90 pipeline steel welded joints [J]. J. Mech. Eng., 2023, 59(24): 83
严春妍, 周倩雯, 张 浩 等. X90管线钢焊接接头氢致开裂敏感性研究 [J]. 机械工程学报, 2023, 59(24): 83
8 Han Y D, Wang R Z, Wang H, et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain [J]. Int. J. Hydrog. Energy, 2019, 44: 22380
9 Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
10 Zhang P, Laleh M, Hughes A E, et al. Effect of microstructure on hydrogen embrittlement and hydrogen-induced cracking behaviour of a high-strength pipeline steel weldment [J]. Corros. Sci., 2024, 227: 111764
11 Koren E, Hagen C M H, Wang D, et al. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique [J]. Corros. Sci., 2023, 215: 111025
12 Du Y F, Lv L, Chen K, et al. Investigating variations in hydrogen-assisted crack propagation of X52 pipeline steel with different microstructural characteristics [J]. Corros. Sci., 2024, 239: 112417
13 Li J Q, Wu Z Y, Zhu L J, et al. Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment [J]. Corros. Sci., 2023, 223: 111460
14 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
15 Chen K, Zhao W, Xiao G C, et al. Study on corrosion resistance and hydrogen permeation behavior in inter-critically reheated coarse-grained heat-affected zone of X80 pipeline steel [J]. Metals, 2022, 12: 1203
16 Qin M, Hu Q, Cheng Y F. Passivation of X80 pipeline steel in a carbonate/bicarbonate solution and the effect of oxide film on hydrogen atom permeation into the steel [J]. Int. J. Hydrog. Energy, 2024, 70: 1
17 Cheng W S, Song B, Lu K, et al. The effect of V8C7 size on hydrogen diffusion behavior and hydrogen induced cracking in pipeline steel [J]. Int. J. Hydrog. Energy, 2024, 50: 94
18 Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrog. Energy, 2021, 46: 20621
19 Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
20 Zhou C S, Ye B G, Song Y Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2019, 44: 22547
21 Zhuo J X, Zhang C, Zhang S, et al. Influence of hydrogen environment on fatigue fracture morphology of X80 pipeline steel [J]. J. Mater. Res. Technol., 2023, 22: 1039
22 Wang D, Hagen A B, Fathi P U, et al. Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions [J]. Mater. Sci. Eng., 2022, 860A: 144262
23 Zhang P, Laleh M, Hughes A E, et al. A systematic study on the influence of electrochemical charging conditions on the hydrogen embrittlement behaviour of a pipeline steel [J]. Int. J. Hydrog. Energy, 2023, 48: 16501
24 Chen K, Zhao W, Xiao G C, et al. Corrosion characteristics of simulated reheated heat-affected-zone of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2023, 210: 110856
25 Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
26 Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrog. Energy, 2017, 42: 27206
27 Han Y D, Jing H Y, Xu L Y. Welding heat input effect on the hydrogen permeation in the X80 steel welded joints [J]. Mater. Chem. Phys., 2012, 132: 216
28 Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel [J]. Mater. Chem. Phys., 2003, 77: 447
29 Xing Y Y, Yang Z L, Yao X C, et al. Comparative study on hydrogen induced cracking sensitivity of two commercial API 5L X80 steels [J]. Int. J. Press. Vessels Pip., 2022, 196: 104620
30 Wang B, Liu Q, Feng Q S, et al. Influence of welding defects on hydrogen embrittlement sensitivity of girth welds in X80 pipelines [J]. Int. J. Electrochem. Sci., 2024, 19: 100661
31 Campari A, Konert F, Sobol O, et al. A comparison of vintage and modern X65 pipeline steel using hollow specimen technique for in-situ hydrogen testing [J]. Eng. Fail. Anal., 2024, 163: 108530
32 Liu X X. Researches on large volume layered high-pressure hydrogen vessels and hydrogen accumulation characteristics in metal [D]. Hangzhou: Zhejiang University, 2012
刘贤信. 大容积全多层高压储氢容器及氢在金属中的富集特性研究 [D]. 杭州: 浙江大学, 2012
33 Yaktiti A, Dreano A, Gass R, et al. Modelling of hydrogen diffusion in a steel containing micro-porosity. application to the permeation experiment [J]. Int. J. Hydrog. Energy, 2023, 48: 14079
34 Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. Int. J. Hydrog. Energy, 2013, 38: 2544
35 Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
36 Huang S, Zhang Y L, Yang C, et al. Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism [J]. Int. J. Hydrog. Energy, 2020, 45: 25541
37 Oriani R A, Josephic P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel [J]. Acta Metall., 1977, 25: 979
38 Kumar R, Arora A, Mahajan D K. Hydrogen-assisted intergranular fatigue crack initiation in metals: role of grain boundaries and triple junctions [J]. Int. J. Hydrog. Energy, 2023, 48: 16481
39 Wang Y F, Han J N, Zhao Y H, et al. Grain refinement's effect on hydrogen embrittlement of 304 austenitic stainless steel: a comparative investigation of hydrogen in-situ charging vs. pre-charging [J]. Int. J. Hydrog. Energy, 2024, 78: 22
[1] WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] BAI Yunlong, LENG Bing, WEI Boxin, DONG Lijin, YU Changkun, XU Jin, SUN Cheng. Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
[4] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[5] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[6] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[7] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[8] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[9] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[10] LING Dong, HE Kun, YU Liang, DONG Lijin, ZHANG Huali, LI Yufei, WANG Qinying, ZHANG Zhi. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[11] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[12] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[13] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[14] Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[15] Kangnan ZHANG,Ming WU,Fei XIE,Dan WANG,Yuxi SAN,Feng JIANG. Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
No Suggested Reading articles found!