Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 755-764    DOI: 10.11902/1005.4537.2023.213
Current Issue | Archive | Adv Search |
Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel
SUN Jiayu1,2, PENG Wenshan2(), XING Shaohua2
1. Institute for Research of Urumqi Petrochemical Company, Urumqi 830019, China
2. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

SUN Jiayu, PENG Wenshan, XING Shaohua. Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 755-764.

Download:  HTML  PDF(23431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In fact, Ni-Cr-Mo-V high strength steel is widely used as engineering structure material of ships- and equipment-building for the exploration of polar resources. However, high strength steel will suffer from corrosion in low temperature seawater environment. In case when the structure component of Ni-Cr-Mo-V high strength steel is subjected simultaneously to stress and corrosive seawater in this polar low temperature environment, its corrosion failure probability will be greatly aggravated. Therefore, it is of significance to clarify the service performance of Ni-Cr-Mo-V high strength steel in this environment. As thus, the corrosion behavior evolution of the steel in simulated low temperature seawaters with variation of dissolved oxygen contents was assessed in lab, while a four-point bending device was adopted as a means of applying stress on the testing steel. Results show that while a stress was applied on the test steel through banding in low temperature seawater, the increase of dissolved oxygen content will accelerate the formation of corrosion products on Ni-Cr-Mo-V high strength steel; correspondingly, Cr and Ni in the corrosion product layer decrease, which reduces the protective effect of the corrosion products layer on the substrate; when the dissolved oxygen content and the applied stress increase simultaneously, the Ni-Cr-Mo-V high strength steel will be further pseudo-passivated, resulting in an increase in its free-corrosion current density. It follows that in low temperature seawater environment, the applied stress and dissolved oxygen have a synergistic effect on the corrosion of Ni-Cr-Mo-V high strength steel, which promotes the corrosion reaction of Ni-Cr-Mo-V high strength steel, resulting in the aggravation of surface corrosion and the decrease of the protective effect of corrosion products on the steel substrate.

Key words:  low-temperature seawater      high strength steel      dissolved oxygen      stress      corrosion     
Received:  06 July 2023      32134.14.1005.4537.2023.213
ZTFLH:  TG172.5  
Corresponding Authors:  PENG Wenshan, E-mail: pengwenshan1386@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.213     OR     https://www.jcscp.org/EN/Y2024/V44/I3/755

Fig.1  Macro-morphologies of Ni-Cr-Mo-V steel immersed for 5 d in natural seawater containing 3.5 mg/L (a-c), 4.5 mg/L (d-f), 5.5 mg/L (g-i) and 6.5 mg/L (j-l) DO under applied tensile stresses of 0%Rp0.2 (a, d, g, j), 50%Rp0.2 (b, e, h, k) and 100%Rp0.2 (c, f, i, l)
Fig.2  Microscopic morphologies of Ni-Cr-Mo-V steel after immersion for 5 d in 3.5 mg/L DO natural seawater under applied stresses of 0%Rp0.2 (a, d), 50%Rp0.2 (b, e) and 100%Rp0.2 (c, f)
Fig.3  Microscopic morphologies of Ni-Cr-Mo-V steel immersed for 5 d in 4.5 mg/L DO natural seawater under applied stresses of 0%Rp0.2 (a, d), 50%Rp0.2 (b, e) and 100%Rp0.2 (c, f)
Fig.4  Microscopic morphologies of Ni-Cr-Mo-V steel immersed for 5 d in 5.5 mg/L DO natural seawater at applied stress of 0%Rp0.2 (a, d), 50%Rp0.2 (b, e) and 100%Rp0.2 (c, f)
Fig.5  Microscopic morphologies of Ni-Cr-Mo-V steel immersed for 5 d in 6.5 mg/L DO natural seawater under applied stresses of 0%Rp0.2 (a, d), 50%Rp0.2 (b, e) and 100%Rp0.2 (c, f)
Fig.6  Three dimensional morphologies of pitting pits of Ni-Cr-Mo-V steel after immersion for 5 d in natural seawater containing 3.5 mg/L (a, b), 4.5 mg/L (c, d), 5.5 mg/L (e, f) and 6.5 mg/L (g, h) DO under applied tensile stresses of 0%Rp0.2 (a, c, e, g) and 100%Rp0.2 (b,d,f,h)
ConditionONaMgSClKCaCrFeNi
3.5 mg/L-0% Rp0.236.19//0.993.04//0.4955.482.72
3.5 mg/L-100% Rp0.233.46//2.030.48//0.6960.511.56
4.5 mg/L-0% Rp0.234.84//0.331.27//0.5558.562.74
4.5 mg/L-100% Rp0.231.64//2.229.04//0.3454.261.14
5.5 mg/L-0% Rp0.231.50//1.449.93//0.3054.071.23
5.5 mg/L-100% Rp0.233.785.98/2.738.170.230.37/47.100.61
6.5 mg/L-0% Rp0.226.6619.381.251.0822.580.450.69/26.150.76
6.5 mg/L-100% Rp0.226.0518.130.631.3120.430.390.38/31.22/
Table 1  Chemical compositions of the corrosion products of Ni-Cr-Mo-V steel under different stresses in natural seawater containing 3.5-6.5 mg/L DO
Fig.7  Nyquist plots of Ni-Cr-Mo-V steel immersed for 5 d in natural seawater containing 3.5 mg/L (a), 4.5 mg/L (b), 5.5 mg/L (c) and 6.5 mg/L (d) DO
Fig.8  Rct values of Ni-Cr-Mo-V steel after 5 d immersion in natural seawater containing different concentrations of DO
Fig.9  Polarization curves of Ni-Cr-Mo-V steel after 5 d immersion under different stresses in natural seawater containing 3.5 mg/L (a), 4.5 mg/L (b), 5.5 mg/L (c) and 6.5 mg/L (d) DO
DO / mg·L-1Applied stressba / mV·dec-1bc / mV·dec-1Ecorr / VIcorr / A·cm-2

3.5

0%Rp0.257.67-295.99-0.643.58 × 10-6
50%Rp0.256.89-351.79-0.644.46 × 10-6
100%Rp0.257.56-396.83-0.635.11 × 10-6

4.5

0%Rp0.273.39-319.74-0.624.06 × 10-6
50%Rp0.273.92-452.67-0.615.62 × 10-6
100%Rp0.271.30-483.37-0.627.35 × 10-6

5.5

0%Rp0.275.64-369.07-0.635.07 × 10-6
50%Rp0.278.54-546.61-0.608.33 × 10-6
100%Rp0.279.05-724.49-0.579.91 × 10-6

6.5

0%Rp0.278.70-489.23-0.607.76 × 10-6
50%Rp0.274.75-771.37-0.569.48 × 10-6
100%Rp0.2108.52-1003.2-0.551.18 × 10-5
Table 2  Fitting parameters of polarization curves of Ni-Cr-Mo-V steel immersed for 5 d in natural seawater under different conditions of DO concentration and applied stress
Fig.10  Polarization curves of Ni-Cr-Mo-V steel after 5 d immersion in natural seawater containing different concentrations of DO under applied stresses of 0%Rp0.2 (a), 50%Rp0.2 (b) and 100%Rp0.2 (c)
1 Yu D W, Zhang D Y, Wu L, et al. Analysis of the influence of convection heat transfer in circular tubes on ships in a polar environment [J]. Atmosphere, 2022, 13: 149
doi: 10.3390/atmos13020149
2 Yang M. Research on China's participation in the polar and deep sea's governance [J]. Ocean Dev. Manag., 2022, 39(5): 58
杨 淼. 我国参与极地深海治理问题研究 [J]. 海洋开发与管理, 2022, 39(5): 58
3 Zhang W H, Zhao J, Gu H, et al. Current situations and development measures of equipment industry of Arctic oil and gas development in China [J]. Int. Petrol. Econ., 2021, 29(3): 33
张文昊, 赵 洁, 顾 洪 等. 中国极地油气资源开发装备产业现状及发展策略建议 [J]. 国际石油经济, 2021, 29(3): 33
4 Yu L W, Wang J R, Wang S Q. Development strategy for polar equipment in China [J]. Strat. Study CAE, 2020, 22(6): 84
于立伟, 王俊荣, 王树青. 我国极地装备技术发展战略研究 [J]. 中国工程科学, 2020, 22(6): 84
5 Xia H C, He J W, Deng S J. Welding procedure of FH40 low-temperature high-strength steel for polar ships [J]. Marine Technol., 2022, 50(3): 70
夏皓春, 贺进巍, 邓胜杰. 极地船用FH40低温高强钢焊接工艺 [J]. 造船技术, 2022, 50(3): 70
6 Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships [A]. The 28th International Ocean and Polar Engineering Conference [C]. Sapporo, 2018
7 Ye Q B, Liu Z Y, Wang G D. Development of cryogenic steel for polar ships [A]. Proceedings of the 10th China Steel Annual Conference and the 6th Baosteel Academic Annual Conference II [C]. Shanghai, 2015
叶其斌, 刘振宇, 王国栋. 极地船舶用低温钢发展 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集II [C]. 上海, 2015
8 Li F R. Distribution of oxygen-minimum layer and factors controlling on it in areas adjacent to South Shetlands and North of Adelaide, Antarctica, in Summer [J]. Antarct. Res., 1989, 1: 21
李福荣. 南设得兰群岛及阿得雷德岛以北海域夏季溶解氧含量最小层分布及其控制因素 [J]. 南极研究, 1989, 1: 21
9 McIntire G, Lippert J, Yudelson J. The effect of dissolved CO2 and O2 on the corrosion of iron [J]. Corrosion, 1990, 46: 91
doi: 10.5006/1.3585085
10 Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel [J]. Chin. J. Eng., 2019, 41: 1029
苏宏艺, 魏世丞, 梁义 等. 静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响 [J]. 工程科学学报, 2019, 41: 1029
11 Zhang H X, Wang X D, Jia R L, et al. Investigation on stress corrosion cracking behavior of welded high strength low alloy steel in seawater containing various dissolved oxygen concentrations [J]. Int. J. Electrochem. Sci., 2013, 8: 1262
doi: 10.1016/S1452-3981(23)14096-X
12 Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145
13 Xue F, Wei X, Dong J H, et al. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35: 596
14 Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
doi: 10.1016/j.oceaneng.2016.01.020
15 Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Constr. Build. Mater., 2020, 238: 117763
doi: 10.1016/j.conbuildmat.2019.117763
16 Wu X, Mu F W, Gordon S, et al. Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters [J]. npj Mater. Degrad., 2021, 5: 28
doi: 10.1038/s41529-021-00174-5
17 Lu H, Shen Z, Zhang L F, et al. Effects of dissolved oxygen and temperature on the stress corrosion of O6Cr17Ni12Mo2Ti stainless steel in supercritical water [J]. Chin. J. Eng., 2015, 37: 1456
陆 辉, 沈 朝, 张乐福 等. 溶解氧和温度对O6Cr17Ni12Mo2Ti不锈钢在超临界水中应力腐蚀的影响 [J]. 工程科学学报, 2015, 37: 1456
18 Qiu J, Li C J, Du M. Stress corrosion and cathodic protection of X80 pipeline steel weldment in acidic seawater [J]. Corros. Prot., 2014, 35: 357
邱 景, 李成杰, 杜 敏. X80管线钢焊接件在酸性海水中的应力腐蚀及阴极保护 [J]. 腐蚀与防护, 2014, 35: 357
19 Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth [J]. Corrosion, 2004, 60: 937
doi: 10.5006/1.3287827
20 Valor A, Rivas D, Caleyo F, et al. Discussion: statistical characterization of pitting corrosion—Part 1: data analysis and Part 2: probabilistic modeling for maximum pit depth [J]. Corrosion, 2007, 63: 107
doi: 10.5006/1.3281683
21 Liu Y W, Wang Z Y, Wei Y H. Influence of seawater on the carbon steel initial corrosion behavior [J]. Int. J. Electrochem. Sci., 2019, 14: 1147
doi: 10.20964/2019.02.36
22 Zhou Y L, Chen J, Xu Y, et al. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment [J]. J. Mater. Sci. Technol., 2013, 29: 168
doi: 10.1016/j.jmst.2012.12.013
23 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
24 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
25 Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
doi: 10.3724/SP.J.1037.2010.00705
刘 杰, 李相波, 王 佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697
26 Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252: 1510
doi: 10.1016/j.apsusc.2005.02.135
27 Li W, Brown B, Young D, et al. Investigation of pseudo-passivation of mild steel in CO2 corrosion [J]. Corrosion, 2014, 70: 294
doi: 10.5006/0950
28 Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
[1] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] ZHANG Zhaoyi, ZHOU Xuejie, CHEN Hao, WU Jun, CHEN Zhibiao, CHEN Zhijian. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[7] ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[8] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] DING Yuzhi, CAO Jinxin, CAO Fengting, LI Tao, TAO Jiantao, WANG Tiegang, GAO Guangyao, FAN Qixiang. Research Progress of Risk-based Inspection Technology in Petrochemical Industry[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[10] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[11] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[12] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[13] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[14] DENG Shuangjiu, LI Chang, YU Menghui, HAN Xing. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[15] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
No Suggested Reading articles found!